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Abstract Deutsch

Abstract Deutsch

Die Generierung von Szenengraphen bietet ein leistungsstarkes Werkzeug für das KI-
gestützte visuelle Verständnis von Bildern. Sie ermöglicht nicht nur die Erkennung von
Objekten in einem Bild, sondern auch die Vorhersage von Beziehungen zwischen diesen,
wie beispielsweise Auto–hält an–Ampel und Fußgänger–überquert–Straße. Diese Fähigkeit
erlangt eine besondere Relevanz im Kontext des autonomen Fahrens, in dem der relationale
Kontext zwischen Verkehrsteilnehmern und Infrastruktur eine entscheidende Rolle spielt.
Allerdings wird die Anwendung der Szenengraphenerstellung in diesem Bereich durch den
Mangel an annotierten Datensätzen behindert. Fahrsimulatoren wie CARLA bieten eine
skalierbare Alternative, die im Vergleich zur manuellen Annotation eine effiziente Daten-
generierung ermöglicht. Allerdings lassen sich Modelle, die ausschließlich auf simulierten
Daten trainiert wurden, aufgrund der erheblichen Domänenlücke zwischen beiden oft nicht
auf reale Daten übertragen.

In dieser Arbeit wird der Herausforderung, die sich aus der Kombination simulierter und
realer Datensätze zur Erstellung autonomer, fahrspezifischer Beziehungsannotationen sowie
der Schließung der Domänenlücke für Vorhersagen in der realen Welt stellt, aufgegriffen. Zu
diesem Zweck wird ein neuartiges Datenfusionsframework vorgeschlagen. Die vorliegende
Arbeit präsentiert die vollständige Pipeline, einschließlich der Datensatzerzeugung in der
Simulation, der Anpassung öffentlich verfügbarer Ressourcen und Augmentationsstrategien.
Das Relation Transformer-Modell wird eingehend analysiert, wobei besonderes auf die
Interpretation der internen Mechanismen des Modells Wert gelegt wird. Zu diesem Zweck
wird die gelernte Attention als Heatmaps visualisiert. Dies liefert Erkenntnisse darüber,
ob sich das Modell bei der Vorhersage von Beziehungen auf semantisch bedeutsame
Bereiche konzentriert. Aufbauend auf diesen Erkenntnissen werden zwei neue Ansätze
vorgestellt, die eine Inferenz auf realen Daten ermöglichen und gleichzeitig das in der
Simulation erworbene relationale Wissen übertragen. Eine Ablationsstudie quantifiziert
darüber hinaus den Einfluss der Domänenlücke auf die Modellleistung und zeigt die Stärken
und Grenzen der vorgeschlagenen Methoden auf. Die Resultate demonstrieren, dass einer
der konzipierten Ansätze die Diskrepanz zwischen Simulation und Realität signifikant
reduziert und konkrete Empfehlungen werden aufgeführt für die Fortentwicklung dieser
Technik in Richtung der Verwendung als Werkzeug für das KI-gestützte visuelle Verständnis
von Bildern im automotive Kontext gibt.
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Abstract English

Abstract English

Scene graph generation has emerged as a powerful tool for AI-driven visual understanding
of images by not only detecting objects in an image but also predicting the relationships
between them, such as car–stops at–traffic light or pedestrian–crosses–street. This capability
is particularly important for autonomous driving, where relational context between road
users and infrastructure plays a critical role. However, the application of scene graph
generation in this domain is hindered by the scarcity of annotated datasets. Driving
simulators such as CARLA provide a scalable alternative, enabling efficient data generation
compared to manual annotation. Yet models trained exclusively on simulated data often
fail to generalize to real-world data due to the substantial domain gap between the two.

This thesis addresses this challenge by proposing a novel data fusion framework that
combines simulated and real datasets to construct autonomous driving–specific relationship
annotations and subsequently bridge the domain gap for real-world prediction. The work
presents the complete pipeline, including dataset generation in simulation, adaptation
of publicly available resources, and augmentation strategies. The Relation Transformer
model is analyzed in depth, and particular attention is given to interpreting its internal
mechanisms by visualizing the learned attention maps as heatmaps. This analysis provides
insights into whether the model focuses on semantically meaningful regions when predicting
relationships. Building on this understanding, two new approaches are introduced to enable
inference on real data while transferring relational knowledge acquired in simulation. An
ablation study further quantifies the impact of the domain gap on model performance and
highlights the strengths and limitations of the proposed methods. Results demonstrate
that one of the developed approaches effectively mitigates the simulation-to-reality gap
and concrete suggestions for advancing this technique toward further uses for AI-driven
visual understanding of images in the automotive context are provided.
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1 Introduction

1 Introduction

Cognitive tasks, such as describing images and answering questions are highly challenging
for an Artificial Intelligence (AI) to learn. They require recognizing visual elements and
reasoning about their complex relationships and contextual meanings [KZG+17]. Inspired
by the human ability to effortlessly interpret and understand visual scenes, visual scene
understanding has become a highly relevant research topic in computer vision [LZZ+24].
Unlike instance-level tasks, which focus solely on detecting and recognizing individual
objects, scene understanding goes beyond mere object localization by capturing the
semantic relationships between objects. These relationships provide richer contextual
information, enabling a more comprehensive representation of a scene.

Understanding driving scenarios is critical to autonomous driving because it enables
developers to design more effective and explainable Advanced Driver-Assistance Systems
(ADAS). However, the complexity and highly dynamic nature of real-world driving environ-
ments, where objects interact in structured yet unpredictable ways, present a significant
challenge. To interpret situations such as a pedestrian crossing in front of a vehicle or a
vehicle overtaking a bicycle, autonomous systems must go beyond object detection and
incorporate relational reasoning [YMM+22a, ZQL+24, MYH+22].

One way to structure such information is through a scene graph, which is a graphical
representation in which nodes correspond to object instances and directed edges encode
the relationships between these objects. By explicitly modeling interactions, such as a
man sitting on a bench or a car parked next to a building, scene graphs facilitate high-
level reasoning about an image’s content. Deep learning models that can infer these
structured representations from images are known as Scene Graph Generation (SGG)
models [JKS+15].

SGG models are designed to process an image and generate a scene graph that describes
its semantic content. See Figure 1 for reference. These models have received significant
attention due to their potential in various downstream applications, including image
captioning and Visual Question Answering (VQA) [CRX+23]. Scene graphs act as a
bridge between visual and textual representations, making them useful for multimodal AI
applications. One of the largest data sets for this application: Visual Genome, presents
this concept [KZG+17].
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Figure 1: From Scene Graph to textual description. Adapted from [CYR23]

1.1 Motivation and Objectives

In one of the earlier reports [Edw24] associated with this thesis, the potential use of scene
graphs as a semantic metric was analyzed. A semantic metric measures the distance (or
difference) between two images based on their semantic content. To develop this metric,
a SGG model was applied to two images, specifically the Relation Transformer (RelTR)
[CYR23]. The outputs were then compared using the Bidirectional Transformers for
Language Understanding (BERT) score [ZKW+20], a metric that quantifies the semantic
similarity of these texts.

This research is conducted within the domain of autonomous driving as part of the NXT
GEN AI METHODS - Generative Methods for Perception, Prediction and Planning
(nxtAIM) project [Rei24]. The goal of nxtAIM is to adapt and apply generative methods
to autonomous driving by leveraging technological advancements and large data sets to
advance the field [Rei24]. However, supervised learning in this field is hindered by the
limited availability of annotated data, which is a particular challenge in scene graph
generation due to the costliness of relationship annotations. For reference, the Visual
Genome data set [KZG+17] relied on contributions from over 33,000 unique crowd workers
to achieve broad coverage. Despite such efforts, no data set currently exists that provides
detailed relationship annotations specifically tailored to autonomous driving scenarios.
The conclusion of the previous report emphasized that, in order to effectively use RelTR
as a semantic metric for autonomous driving data, a richly annotated data set with
domain-specific relationships is essential.
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1 Introduction

To address this challenge, this thesis builds upon a self-created annotation framework.
Specifically, a semi-automatic annotation tool was designed to efficiently generate a richly
annotated data set with minimal human effort. This tool leverages the Car Learning to
Act (CARLA) simulation software [DRC+17] to create autonomous driving images along
with automatically annotated relationships.

Figure 2: Example from the CARLA Simulator

However, training RelTR solely on a simulated data set presents a significant challenge.
The CARLA simulator is built on the Unreal Engine 4 game engine [Epi], resulting in
images that resemble synthetic video game graphics rather than real-world scenes (see
Figure 2). Although the visual appearance differs considerably, the semantic relationships
between objects remain valid. Overcoming this domain gap is the central focus of this
thesis and leads to the overarching research objective: How can the domain gap between
simulated and real-world data be addressed, particularly through the use of a transformer
architecture that leverages an encoder-decoder pipeline to bridge the gap in the latent space?

This master’s thesis is conducted in cooperation with Jülich Supercomputing Centre (JSC),
which provides access to powerful High Performance Computing (HPC) resources. These
systems will be used extensively throughout this research.

1.2 Problem Definition

The lack of richly annotated large-scale real-world data sets remains a major bottleneck in
training high-performance deep learning models, particularly for vision-based applications
in autonomous driving. Tasks such as image recognition (e.g., detecting vehicles or pedes-

14



1 Introduction

trians), path planning and navigation (e.g., identifying drivable versus occupied areas), and
target tracking (e.g., maintaining the identity of an object across frames) all depend on
deep learning models and large amounts of high-quality training data [ZCC+25]. However,
acquiring and annotating real-world data at scale is both costly and time consuming.

To address this challenge, recent research has increasingly explored the use of synthetic
data generated in simulation environments and video games, such as Grand Theft Auto
(GTA) V [RVRK16a]. These virtual platforms offer richly detailed scenes, complete control
over environmental conditions, and the ability to generate large amounts of labeled data
with minimal manual effort [RVRK16b]. Synthetic data sets have demonstrated significant
promise in various perception tasks, such as object detection, semantic segmentation, and
scene understanding. This is particularly evident in domains like autonomous driving,
where the demand for diverse and accurately labeled data is critical.

However, a persistent challenge in the use of synthetic data is the Simulation-to-Reality
(Sim2Real) domain gap — the performance degradation observed when models trained
on synthetic data are evaluated on real-world imagery [RVRK16b, WU18]. This gap
stems from significant differences in image statistics, lighting conditions, textures, noise
characteristics, and semantic distributions between the simulated and real world domains.
Despite ongoing efforts, the fundamental causes and mechanisms behind this generalization
gap remain only partially understood [RDD24].

This problem becomes even more pronounced in the task of SGG, which extends object
detection by modeling pairwise relationships between entities. In the context of autonomous
driving, scene graphs offer a structured and interpretable representation of the environment,
allowing reasoning about interactions such as car turning at intersection or pedestrian
crossing road in front of vehicle. Despite their promise, no existing real-world data set
provides fine-grained relationship annotations tailored to driving scenarios. The annotation
process for scene graphs is significantly more complex than for bounding boxes or labels,
making real-world SGG data sets particularly scarce [KZG+17].

Synthetic environments, in contrast, offer not only efficient data capture, but also enable
semi-automated annotation pipelines. Access to internal simulation metadata, such as
object locations, class IDs, and scene structure, allows the automatic generation of high-
quality relationship annotations. This makes synthetic data an attractive alternative to
overcome data scarcity, provided that the domain gap can be effectively bridged.
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1.2.1 Research Hypotheses

This thesis investigates whether the Sim2Real domain gap for a transformer-based SGG
model, specifically RelTR [CYR23], can be mitigated by decoupling the training process
and aligning the learned latent space representations.

The proposed approach assumes that the RelTR encoder, trained on real-world data, can
learn robust domain-relevant visual features, while the relationship classification head,
trained on synthetic data, can take advantage of this latent space to predict relationships
on the real data domain.

Feature extraction: The encoder of the RelTR model is trained on real-world driving data
to capture relevant and domain-specific image features.

Relationship Classification: The reasoning layers responsible for predicting pairwise rela-
tionships are trained on synthetic data, which provides dense and accurate annotations
via automated labeling.

Due to the absence of a richly annotated real-world SGG data set, joint fine-tuning of both
components is currently infeasible. Instead, this thesis explores model merging strategies
that combine these separately trained components into a unified, end-to-end SGG model
capable of generalizing to real-world driving scenes.

The data set created in the course of this thesis does not claim completeness. Instead, it fo-
cuses specifically on road lane–related relationships, which are missing or underrepresented
in existing data sets. Given this, the question arises whether those selected relationships
are even learnable to infer even without a domain shift. The scope of this research is strictly
limited to the RelTR model; comparisons with other SGG architectures are considered
out of scope.

Finally, due to the computational cost associated with training RelTR, only a limited
set of hyperparameter adjustments was made compared to the original implementation
in [CYR23]. This decision reflects the assumption that the published hyperparameters
are sufficiently well tuned and allows this thesis to focus on evaluating the proposed
approaches. Extensive hyperparameter optimization, including methods such as K-Fold
cross-validation, is therefore excluded from the scope of this work.

1.3 Thesis Structure

This thesis is organized into several key sections that build upon each other to address the
research objective of bridging the Sim2Real domain gap in SGG for autonomous driving.
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1 Introduction

It begins with a comprehensive introduction to Convolutional Neural Network (CNN) and
the transformer architecture, providing the necessary background for understanding the
model analyzed in this work. This is followed by an in-depth examination of the RelTR
model architecture, including its core components: the CNN backbone, the encoder-decoder
architecture, and the feedforward classification network. The section concludes with a
detailed explanation of the employed loss functions.

After establishing the theoretical and technical foundations, the thesis introduces its
core research concept. This includes a clear statement of the main research objectives, a
description of the two proposed approaches to address the domain gap, and an explanation
of how these approaches are evaluated. The motivation and relevance of the research are
also discussed to provide context and define the scope of the work.

Subsequently, a comprehensive review of the related literature is presented. It begins with
an overview of previous efforts to bridge the Sim2Real gap, outlining the challenges and
solutions explored in existing research. The focus then shifts to the use of simulation
environments and scene graphs in autonomous driving, further emphasizing the relevance
of this work within the broader research landscape. And concludes with differencing this
work from existing publications.

With the context established, the thesis proceeds to describe the data sets developed and
used in the experiments. Both data sets are analyzed in terms of class distributions and
frequency of occurrence. For the relationship data set, the distribution of relation types is
also examined. Each data set section concludes with a baseline training of the respective
model component to serve as a benchmark for subsequent evaluations.

The core of the thesis focuses on the two proposed approaches to address the Sim2Real
domain adaptation problem. For each method, the experimental setup is described, followed
by a detailed evaluation. Performance is first assessed on simulated data, with results
compared against established baselines. Average and class-wise performances are analyzed.
Subsequently, the models were evaluated on a small, manually annotated real-world data
set. This includes qualitative analyses and inference examples, with a particular focus on
attention maps to provide insight into model behavior.

After analyzing the Sim2Real approaches, an ablation study is conducted to better
understand the strengths and limitations of the proposed approaches. The best-performing
strategy is applied to a third data set that is visually closer to the simulated domain. This
allows for distinguishing between limitations inherent to the approach itself and those
caused by the domain gap.

The thesis concludes with a comprehensive discussion of the research, highlighting key
contributions and findings, and addressing the initial research questions. Following this,
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a dedicated section on future work outlines potential directions to expand and enhance
the study, suggesting avenues for further investigation and improvements. Finally, the
concluding chapter synthesizes the overall outcomes.
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2 Prior Knowledge

To establish a foundation for the subsequent analysis, this section outlines the key concepts
and architectures relevant for this thesis. It begins with an overview of CNNs and the
transformer architecture, followed by a detailed examination of the RelTR model, which
forms the core of the methodology employed.

2.1 Convolutional Neural Networks

CNN are a core architectural paradigm in deep learning, especially suited for processing grid-
like data, such as images. Introduced as a biologically inspired approach to visual perception,
CNNs have become the foundation for most modern computer vision systems [AZH+21,
PMR+23].

A typical CNN architecture begins with a convolutional layer followed by a non-linear
activation function, and often a pooling layer. This basic pattern can be grouped into
blocks and repeated throughout the network. In classification-focused CNNs, the final
layers are usually one or more fully connected layers, as illustrated in Figure 3.

Car

Input Convolution + ReLU
Classification

Pooling Flatten FFN Softmax

Truck

Figure 3: Standard CNN architecture. Adapted from [PMR+23].

The convolutional layer applies a kernel (or filter) to compute feature maps from the
input data. This kernel typically has the same number of channels c and a square spatial
dimension, resulting in a shape of w×h×c. The filter slides over the input image, computing
the sum of element-wise multiplications between the kernel weights and the input values.
This produces a two-dimensional activation map, as defined in Equation 2.1[PMR+23].

Activation map =
columns∑

y=0

×

(
rows∑
x=0

Input(x− p, y − q) Filter(x, y)

)
(2.1)
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Figure 4: Convolutional layer operation. Adapted from [PMR+23].

The resulting activation map generally differs in spatial dimensions from the input. Ac-
cording to Equation 2.2, the output dimensions depend on the kernel size K, stride S

and padding P . Padding, often implemented by zero-padding the input, can be used to
preserve spatial dimensions. Alternatively, increasing the stride leads to a greater spatial
reduction.

Wout ×Hout =

(
⌊Win + 2P −K

S
⌋+ 1

)
×
(
⌊Hin + 2P −K

S
⌋+ 1

)
(2.2)

A visual representation of this convolutional operation is shown in Figure 4.

After convolution, the activation map is passed through a non-linear activation function.
These functions are essential in neural networks to introduce non-linearity, allowing them
to learn complex and abstract patterns [DSC22]. Following activation, pooling layers
reduce spatial dimensions by aggregating neighboring values using operations such as
maximum or average pooling. This reduces the computation and helps mitigate overfitting
[PMR+23].

2.2 Transformer

The transformer is a deep learning architecture originally proposed for sequence modeling
tasks in Natural Language Processing (NLP) [VSP+17]. Since then, the transformer
architecture has also found wide application in computer vision and scene understanding
[CMS+20, CYR23, DBK+21].

The standard transformer consists of an encoder that maps an input sequence of symbol
representations x1, ..., xn to a sequence of continuous representations z = (z1, ..., zn. The
decoder then generates an output sequence y1, ..., yn, typically one token at a time. Unlike
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previous neural sequence transduction models such as Recurrent Neural Network (RNN)
or Long Short-Term Memory (LSTM), the transformer relies solely on the attention
mechanism, without recurrence or convolution.

Multi - Head
Attention

Feed
Forward

Add & Norm

Add & Norm

Input
Embedding

Positional
Encoding

Encoder
Layer

Inputs

Masked
Multi - Head
Attention

Multi - Head
Attention

Add & Norm

Add & Norm

Output
Embedding

Positional
Encoding

Decoder
Layer

Outputs

Output
Probabilities

Feed
Forward

Add & Norm

Linear

Softmax

Figure 5: Transformer Architecture. Adapted from [VSP+17]

The core component is the attention function, which maps a query and a set of key-
value pairs to an output. Specifically, the query qi key ki and the value vi are vector
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representations derived from the same input vector xi using different learned weight
matrices Wq,Wk,Wv respectively:

qi = Wq × xiki = Wk × xivi = Wv × xi (2.3)

These vectors are typically stacked into matrices Q,K, V for parallel computation. The
scaled dot-product attention is computed by taking the dot product of the queries and keys.
This is then scaled by the square root of the key dimension dk. The result is normalized
using the softmax function and multiplied by the value matrix V :

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.4)

with the softmax function defined as:

softmax(xi) =
eVi(x)∑
k e

Vk(x)
(2.5)

which normalizes each input Vi(x) into the range of (0, 1) with the constraint that all
inputs Vk(x) sum up to 1 [Bri89].

The attention operation allows each position in the input sequence to attend to all other
positions, making it possible to capture long-range dependencies.

To increase model expressiveness and allow the network to learn from different represen-
tation subspaces at different positions, the transformer introduces multi-head attention.
Instead of performing a single attention operation, the input is linearly projected into
multiple lower-dimensional subspaces via separate projection matrices WQ

i , WK
i and WK

i ,
for each attention head i. These projections are processed in parallel and their outputs
concatenated. A final projection matrix WO is applied to combine the heads into the final
output:

MultiHeadAttention(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.6a)

where headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.6b)

WQ
i ,WK

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv (2.6c)

For a graphical overview of the original transformer see Figure 5.

As shown in Figure 5, the transformer integrates positional encodings to preserve spatial
structure. Since the attention mechanism itself is permutation invariant, it lacks any inher-
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ent notion of spatial or sequential order [VSP+17]. One common approach to incorporating
positional information in transformers is to add fixed sinusoidal encodings of varying
frequencies to the input embeddings:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
(2.7a)

PE(pos,2i+1) = cos
( pos

100002i/dmodel

)
(2.7b)

Alternatively, positional encodings can also be learned during training, allowing the model
to adapt the positional representation to the specific task.

2.3 Overview of RelTR Architecture

This section provides a brief description of how the RelTR model operates and outlines its
main architectural components. The discussion begins with the CNN backbone for feature
extraction, followed by the transformer encoder–decoder architecture, and concludes with
the inference procedure and loss functions used for training.

Positional
Encoding

Et + Es

CSA

CNN

DVA DEA
Dog

DEADVA

Feature
Encoder

Triplet Decoder

Feature
Decoder

FFN

FNN

Et

Qe

Qs
Qs

Qo

Qo

Msub

Mobj

EtEt + Es

Beachon

Figure 6: Architecture overview of RelTR. Adapted from [CYR23]

2.3.1 CNN Backbone Architecture

Several well-known CNN architectures build on the same principles, including AlexNet
[KSH17], VGGNet [SZ15], and ResNet [HZRS16]. Since the authors of RelTR chose ResNet
as their backbone, this architecture is the focus of this thesis.

In [HZRS16], the authors analyzed the training and testing error behavior of networks
with increasing depth. They observed that deeper networks can suffer from higher training
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x

Figure 7: Residual block with identity shortcut. Cite [HZRS16].

error due to the vanishing or exploding gradient problem, where gradients either become
negligibly small or grow uncontrollably due to repeated multiplications during backpropa-
gation. To address this, they introduced the deep residual learning framework, which is
the basis of ResNet.

Instead of learning a direct mapping H(x), residual networks learn a residual function
F(x) = H(x)− x, so that the actual mapping becomes:

H(x) = F(x) + x (2.8)

These residual blocks typically consist of two convolutional layers with Rectified Linear
Unit (ReLU) activations in between and one around the residual sum. The ReLU function
is defined as:

ReLU(x) = max(0, x) for x ∈ R (2.9)

This structure, shown in Figure 7, allows for the training of significantly deeper networks
without degrading performance. If gradients through F(x) vanish, the identity shortcut x
ensures that at least the input is propagated, effectively skipping the block. This principle
is not only used for CNN architectures, it is also used in transformer-based architectures
[VSP+17].

The authors propose several variants of the ResNet architecture, differentiated primarily by
their depth. These include ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152,
where the number indicates the total number of layers in the network. In the case of
RelTR, the ResNet-50 variant is used as the convolutional backbone to extract visual
features from the input images.
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To adapt ResNet for use as the backbone in RelTR, the classification layers at the end
are removed. This allows the network to output a dense feature map (often referred to as
feature embedding) instead of class scores. This output is then passed on to the transformer
component, as described in the following section.

2.3.2 Encoder

The encoder of RelTR largely follows the structure of a standard transformer encoder
but is adapted to process image-based feature maps rather than one-dimensional token
sequences. Each encoder layer consists of a multi-head self-attention mechanism and a
position-wise Feed Forward Network (FFN), both surrounded by residual connections
Equation 2.8 and layer normalization. The FFN applies two linear transformations with a
ReLU Equation 2.9 activation in between, as defined in Equation 2.10.

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2.10)

For a schematic overview of the encoder, see Figure 5.

Adapting the Transformer Encoder to Images Unlike traditional transformers
that operate on one-dimensional sequences of tokens, RelTR is designed to handle two-
dimensional spatial features extracted from images. A similar adaptation is discussed in
[DBK+21], where image inputs are divided into flattened two-dimensional patches and
reshaped into a sequence:

xp ∈ RN×(P 2·C), (2.11)

where C denotes the number of channels, (P, P ) is the resolution of each patch, and
N = HW/P 2 is the total number of patches for an image of resolution (H,W ). These
patches are then projected into the model’s embedding space using a trainable linear layer.

In RelTR, a hybrid approach is used [DBK+21]. Instead of working with raw image patches,
the model first passes the image through a CNN backbone, which generates a feature map
Z0 ∈ RHW×d. This feature map is then transformed using a convolutional layer to align
with the transformer’s input embedding dimension.

Positional Encodings for two-dimensional Spatial Information For image-based
inputs, a two-dimensional positional encoding is necessary. Following the approach in
[DBK+21], separate sine/cosine encodings are computed for the X and Y spatial axes.
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Each encoding has a dimensionality of dmodel/2, and they are concatenated to form the final
two-dimensional positional embedding. This enables the model to capture both horizontal
and vertical spatial relationships.

Query, Key, and Value Calculation in RelTR In RelTR, the query Qencoder and
key Kencoder matrices are derived from the CNN feature map output. The classification
layers of the backbone are removed (as discussed in Section 2.3.1), producing a feature
activation tensor f ∈ RC×H×W . This feature map is processed by a convolutional layer,
and two-dimensional positional encodings Ep are added to compute the attention inputs:

Qencoder, Kencoder = Conv(f) + Ep. (2.12)

Because the self-attention mechanism requires identical queries and keys, Qencoder and
Kencoder share the same values. The value Vencoder, however, is derived from the convolutional
layer without the addition of positional encodings.

This design ensures that spatial structure is preserved throughout the attention process,
while enabling the model to reason about interactions across the entire image. By encoding
both content and location, the encoder can learn meaningful object and relation features
that are crucial for downstream SGG tasks [CYR23].

2.3.3 Decoder

The RelTR’s decoder stacks three key attention mechanisms: Coupled Self Attention
(CSA), Decoupled Visual Attention (DVA), and Decoupled Entity Attention (DEA), on
top of the Entity Detection Layer from the Detection Transformer (DETR) [CMS+20].
The three key attention mechanisms are referred to as the relationship detection module
in this thesis.

Entity Detection Layer The Entity Detection Layer forms the first component of each
decoder block in RelTR. Although it follows the general transformer decoder architecture
proposed in [VSP+17], it incorporates specific adaptations for parallel object decoding.
Specifically Ne learnable embeddings of dimension d are processed via a multi-head
self-attention mechanism (cf. Equation 2.6a) followed by a position-wise FFN.

Unlike the original transformer, which decodes one token at a time, DETR [CMS+20]
introduces parallel decoding of N objects. RelTR adopts this parallel decoding paradigm
to represent multiple entities simultaneously.
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A crucial distinction between the encoder and decoder is the presence of a cross-attention
mechanism, which connects the decoder’s entity representations with the encoder’s visual
features. While the mathematical operations of cross-attention are identical to those of
self-attention, the key difference lies in the origin of the inputs:

1. Self-attention: Query Qself , Key Kself and Value Vself are all derived from the same
sequence (i.e., the entity embeddings).

2. Cross-attention: Query Qcross is obtained from the previous decoder block, while
Kcross and Vcross originate from the encoder output, also referred to as memory or
the latent space.

Implementation in RelTR In RelTR, the queries Qself and keys Kself are computed
from the sum of the entity representations and their corresponding positional embeddings.
The values Vself in contrast, are derived directly from the entity representations without
positional information.

For the cross-attention operation:

1. Qcross is obtained similarly to Qself , but uses the updated entity representations
from the preceding self-attention layer, such that Qcross ̸= Qself

2. Kcross and Vcross are sourced from the encoder memory. Only the keys are augmented
with positional encodings.

The output of this layer is passed through a FFN:

Qe = FFN(Qe +Qe) (2.13)

The FFN consists of two linear transformations with a ReLU activation in between,
followed by residual connections and layer normalization, which ensure stable gradient
propagation. The resulting entity embeddings Qe, are forwarded to the triplet decoding
layers for subject-object reasoning.

Coupled Self-Attention The CSA layer enables the decoder to learn the semantic roles
of entities specifically, whether they act as subjects or objects in relational triplets. This
step is essential for SGG, as it lays the foundation for identifying semantic dependencies
between entities [CYR23].

To achieve this, two types of learnable queries are introduced:
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1. Subject queries Qs ∈ RNt×d

2. Object queries Qq ∈ RNt×d

However, since self-attention is permutation-invariant (i.e., treats all elements symmetri-
cally), explicit differentiation between triplet components is required. This is addressed
by introducing learnable triplet encodings Et ∈ RNt×d, along with subject-specific Es and
object-specific Eo role embeddings.

The input to the self-attention layer is constructed as:

Q = K = [Qs + Es + Et, Qo + Eo + Et] (2.14)

The concatenated representation is then processed through a self-attention mechanism:

[Qs, Qo] = AttCSA(Q,K, [Qs, Qo]) (2.15)

After attention is applied, the representations retain the same symbols Qs and Qo for
brevity. The updated embeddings are then split back into subject and object branches.

Decoupled Visual Attention The DVA module extracts fine-grained visual features
from the encoder’s output Zmemory enabling each entity to attend to relevant image regions.
Unlike CSA, DVA treats the subject and object branches independently to prevent mutual
interference.

The decoder queries Qs, Qo are individually combined with the triplet encodings and used
to query the encoder memory, which is augmented with positional encodings:

Q = Qs/o + Et, K = Zmemory + Ep (2.16)

Where:

1. Qs/o represents the subject or object query, processed independently.

2. Et is the learnable triplet encoding, which helps distinguish between different triplets.

3. Ep originated from the CNN backbone and was computed alongside the feature map
Z0.

The attention operation produces updated entity queries as well as spatial attention maps:
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Qs/o,M(sub/obj) = Att
(sub/obj)
DV A (Q,K,Zmemory) (2.17)

The attention maps (M(sub/obj) ∈ RNt×HW indicate which regions of the input feature map
each subject or object attends to. These will later be used to predict the coordinates of
the subject and object (see Section 2.3.4).

Decoupled Entity Attention The final module in each decoder block, DEA, refines the
subject and object representations by leveraging the global entity embeddings Qe. Unlike
CSA and DVA, DEA does not distinguish between semantic roles, enabling information
flow between the entity-level and triplet-level representations.

The DEA operation is defined as:

Q(s/o) = Att
sub/obj
DEA (Qs + Et, Qe, Qe) (2.18)

The updated representations are subsequently passed through a FFN:

Q(s/o) = FFN(Q(s/o) +Q(s/o) (2.19)

As in earlier layers, this FFN consists of two linear layers with ReLU activation, residual
connections, and layer normalization. The result is a refined embedding of subject and
object queries that can be used for predicting relational triplets.

2.3.4 Final Inference

The final output of RelTR is a list of predicted relational triplets. Each triplet consists
of a predicate label, the class labels of both subject and object, and their corresponding
bounding box coordinates.

Output Symbol Produced By
Target Entity Representations Qe Output of Entity Layer
Target Triplet Representations [Qs, Qo] CSA → DVA → DEA
Subject Attention Map Msub DVA
Object Attention Map Mobj DVA

Table 1: Key outputs of the transformer model at different stages.
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Alternative Entity-Based Inference The model can perform classification and bound-
ing box regression using global entity representations Qe, produced by the Entity Layer,
as an alternative inference mode. This mode is useful when training the entity detection
module independently.

Classentity = softmax(FFN(Qe)) (2.20a)

BBoxentity = σ(MLP(Qe)) (2.20b)

This allows for a decoupled approach where entity localization and classification are
handled independently of triplet reasoning.

Object and Subject Inference The class labels for the subject and object are predicted
using two independently trained FFNs, each consisting of a single linear layer. These
classifiers take the respective triplet representations Qs and Qo as input (cf. Table 1):

Classsub/obj = softmax(FFN(Qs/o)) (2.21)

Bounding box coordinates for both subject and object are predicted via separate Multi-
Layer Perceptrons (MLP)s. Each MLP takes its respective entity representation as input
and outputs four values representing the normalized center coordinates x, y and the width
and height of the bounding box:

BBoxsub/obj = σ(MLP(Qs/o)) (2.22)

Predicate Prediction The predicate (i.e., relationship) between the subject and object
is predicted by another MLP. It takes as input the concatenation of the refined subject
and object representations Qs and Qo as well as a spatial feature vector Vspa:

p̂prd = softmax(MLP([Qs, Qo, Vspa])) (2.23)

The spatial feature vector Vspa is computed by concatenating the attention heatmaps for
the subject and object Msub and Mobj and passing the result through a CNN, as illustrated
in Figure 8.

The softmax function in Equation 2.23 yields a probability distribution over all predicate
classes, from which the most likely predicate is selected.
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Linear (256, 4)
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Figure 8: Left: Architecture to generate bounding box coordinates. Right: Architecture to
generate spatial feature vector Vspa. Adapted from [CYR23]

2.3.5 Loss Functions

Like DETR [CMS+20], RelTR outputs a fixed number N of predictions, where N is set to
be significantly larger than the typical number of objects in an image. In order to compute
the loss between the set of N predictions, denoted as ŷ = {ŷi}Ni=1, and the corresponding
ground truth y, the following three steps are performed:

1. Extend the ground truth set y to length N by appending no-object ∅ entries.

2. Determine the optimal assignment between predicted and ground truth elements.

3. Calculate the loss based on this assignment.

Optimal matching is achieved via the Hungarian algorithm [CYR23, CMS+20]. A classical
use case of the Hungarian algorithm (see Algorithm 1) is the Job Assignment Problem.A
toy example is provided to illustrate the algorithmic principles using the minimization
variant required for loss computation.

Assume a set of employees Aemployee = (0, 1, 2, 3)T and a set of jobs Bjobs = (0, 1, 2, 3),
along with a cost matrix indicating the cost for assigning employee e to job j. The goal is
to find a one-to-one assignment between employees and jobs that minimizes the total cost,
subject to the constraint that each employee is assigned to exactly one job and no job is
assigned to more than one employee. A graphic showing the algorithm in action for a cost
matrix Mcost can be found in Figure 9.
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Algorithm 1 Hungarian Algorithm
1: Mcost of shape (N,N)
2: M ←Mcost ▷ Create working copy of cost matrix
3: procedure Initialization(M)
4: for each row r in M do
5: Subtract min(r) from each element in r
6: end for
7: for each column c in M do
8: Subtract min(c) from each element in c
9: end for

10: Covering(M)
11: end procedure
12: procedure Covering(M)
13: Cover all zeros in M using the minimum number of horizontal and vertical lines
14: U ← set of uncovered elements
15: D ← set of elements covered twice (horizontally or vertically)
16: if number of covering lines needed= N then
17: OutputOptimum(M)
18: else
19: Augmentation(U, D, M)
20: end if
21: end procedure
22: procedure Augmentation(U, D, M)
23: m← min(U)
24: for each e ∈ U do
25: e← e−m
26: end for
27: for each e ∈ D do
28: e← e+m
29: end for
30: Covering(M)
31: end procedure
32: procedure OutputOptimum(M)
33: opt← 0
34: coveredColumns← []
35: for each row index i in M do
36: Z ← list of column indices j such that M [i][j] = 0
37: j∗ ← argminj∈Z Mcost[i][j] & j /∈ coveredColumns
38: append j to coveredColumns
39: opt← opt+Mcost[i][j

∗]
40: end for
41: return opt
42: end procedure

Analogously, in the case of RelTR, the optimal assignment between ground truth elements
and predictions is determined by constructing a cost matrix, where each entry quantifies
the cost of matching a predicted element ŷi with a ground truth label yj.
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Figure 9: Example of the Hungarian algorithm. Blue circles indicate the row-wise minima.
Red circles mark the minima among the column-wise minima after subtracting the
row-wise minima. Column-wise minima equal to zero were excluded for clarity

As described in Section 2.3.4, RelTR generates five prediction outputs: (1) entity class
probabilities (Classentity) and (2) entity bounding boxes (BBoxentity) for object-level
inference, as well as (3) subject/object class probabilities (Classsub/obj), (4) subject/object
bounding boxes (BBoxsub/obj), and (5) predicate probabilities (p̂pred) for relationship triplet
inference.

Entity-Based Matching In Entity-Based Matching, each entry of the Entity Cost
Matrix ECMi,j , with (i, j) ∈ Nentity, where Nentity denotes the number of predictions made
by the Entity Detection Layer (see Section 2.3), is computed as a linear combination of
the negative log-likelihood of the class prediction and the bounding box loss. This results
in the following equation:

LHungarianEntity(y, ŷ) =
N∑
i=1

[
− log p̂σ̂(i)(ci) + 1{ci ̸=∅}Lbox(bi, b̂σ̂(i))

]
, (2.24)

where σ̂(i) is computed as a pair-wise matching cost between ground truth yi and a
prediction with index σ(i):

σ̂ = arg min
σ∈SN

∑
Lmatch(yi, ŷσ(i)), (2.25)
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The negative log-likelihood term − log p̂σ̂(i)(ci) is computed by selecting the predicted class
probability corresponding to the ground truth label ci from the model output at index
σ̂(i). This is done by using the output of the final layer of the FFN applied to Qs/o before
the softmax (see Equation 2.20a) and then applying the logarithm.

The bounding box loss Lbox(bi, b̂σ(i)) measures the distance between the predicted bounding
box b̂σ(i) and the ground truth box bi. It combines the l1 distance and the generalized
Intersection over Union (IoU) loss Lgiou [RTG+19], resulting in the following equation:

Lbox(bi, b̂σ(i)) = λiouLgiou(bi, b̂σ(i)) + λL1∥bi − b̂σ(i)∥1, (2.26)

where λiou, λL1 ∈ R are hyperparameters that balance the two loss terms [CMS+20].

Algorithm 2 Generalized IoU. Adapted from [RTG+19]
1: Predicted Box with Bp = (xp

1, y
p
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2, y

p
2)

2: Ground Truth Box with Bg = (xg
1, y

g
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g
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g
2)

3: Calculating area of Bp : Ap = (xp
2 − xp

1)× (yp2 − yp1)
4: Calculating area of Bg : Ag = (xg

2 − xg
1)× (yg2 − yg1)

5: Calculating intersection I between Bp and Bg:
6: xI

1 = max(xp
1, x

g
1), xI

2 = max(xp
2, x

g
2),

7: yI1 = max(yp1, y
g
1), yI2 = max(yp2, y

g
2)

8: I =

{
(xI

2 − xI
1 )(y

I
2 − yI1 ), if xI

2 > xI
1 and yI2 > yI1

0 otherwise
9: Finding the coordinate of smallest enclosing box Boxc:

10: xc
1 = min(xp

1, x
g
1), xc

2 = min(xp
2, x

g
2),

11: yc1 = min(yp1, y
g
1), yc2 = min(yp2, y

g
2)

12: Calculating area of Bc : Ac = (xc
2 − xc

1)× (yc2 − yc1)
13: IoU = I

U
, where U = Ap + Ag − I

14: GIoU = IoU − Ac−U
Ac

15: return 1−GIoU

Relationship Triplet Matching In Relationship Triplet Matching, each entry of the
triplet cost matrix TCM(i,j), with (i, j) ∈ Ntriplet, where Ntriplet denotes the number of
relationship triplet predictions made by the DVA and DEA modules (see Section 2.3), is
computed as a linear combination of the negative log-likelihoods of the subject, predicate,
and object class labels, as well as the corresponding bounding box losses for the subject
and object.

Final Loss Calculation After applying the Hungarian algorithm to match predictions
with the ground truth, the final loss can be calculated. This loss is then minimized by an
optimizer through weight updates in the model.
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For training the RelTR model, the authors employ three primary loss components [CYR23]:

1. Classification loss for entity, subject, and object class labels, denoted as Llabels,

2. Bounding box regression loss for entity, subject, and object boxes, denoted as Lboxes,

3. Relation classification loss, denoted as Lrelations.

(1) Label Loss: The ground truth labels ylabels consist of the class labels of all entities in
the image, as well as the entities acting as subject and object in each relation triplet. The
predicted labels ŷlabels are obtained from the outputs of Equation 2.20a and Equation 2.21.
Since the matching ensures that each ground truth entry at index i corresponds to its
respective prediction at index i, the classification loss is computed using the standard
cross-entropy function [COR98]:

Llabels(ylabels, ŷlabels) = −
C∑
i=1

ylabels,i log(ŷlabels,i) (2.27)

where C is the number of classes.

(2) Bounding Box Loss: The ground truth bounding boxes yboxes contain the coordinates
(x1, y1, x2, y2) for all entities, including those acting as subjects and objects in the relation
triplets. The box loss Lboxes combines the generalized IoU loss and the ℓ1 loss, similar to
the DETR model:

Lboxes(yboxes, ŷboxes) = Lgiou(yboxes, ŷboxes) + ∥yboxes − ŷboxes∥1 (2.28)

(3) Relation Loss: The predicted relations ŷrelations and their corresponding ground truth
yrelations, are used to compute the relation classification loss. This is done again using
cross-entropy.

Lrelations(yrelations, ŷrelations) = −
C∑
i=1

yrelations,i log(ŷrelations,i) (2.29)

Combined Loss: The total loss used to train the model is a weighted sum of the three
components described above:

Ltotal = λ1Llabels + λ2Lboxes + λ3Lrelations (2.30)

Where, λ1, λ2, and λ3 are hyperparameters that control the relative contribution of each
loss term to the overall training objective [CYR23].
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2.3.6 Optimizer

The optimizer used to minimize the loss functions presented in Section 2.3.5 by updating
the parameters of the RelTR model is Adam with decoupled Weight decay (AdamW)
[CYR23, LH17]. AdamW is a variant of the Adam optimizer that incorporates weight
decay, to the momentum terms of Adam, by decoupling it from the gradient computation.

The optimization process begins by computing the gradients of the model parameters
with respect to the loss (Algorithm 3 Line 8). These gradients are then used to update
two running averages, commonly referred to as the first and second momentum terms
(Algorithm 3 Line 9-10). To account for initialization bias, both momentum terms are
corrected (Algorithm 3 Line 11-12). After applying the adaptive update based on the
momentum terms, the separate weight decay term is added (Algorithm 3 Line 14) [LH17].

Algorithm 3 Adam with decoupled weight decay [LH17]

Require: Learning rate α = 10−4

Require: Decay and regularization β1 = 0.9, β2 = 0.999, ϵ = 10−8, λ = 10−4

1: t← 0
2: θt=0 ∈ Rn ▷ Parameters to optimize
3: ηt=0 ∈ R ▷ Schedule multiplier
4: mt=0 ← 0 ▷ First moment vector
5: vt=0 ← 0 ▷ Second moment vector
6: while stopping cirterion not met do
7: t← t+ 1
8: gt ← ∇ft(θt−1)
9: mt ← β1mt−1 + (1− β1)gt

10: vt ← β2vt−1 + 1(1− β2)g
2
t

11: m̂t ← mt/(1− βt
1)

12: v̂t ← vt/(1− βt
2)

13: ηt ← SetScheduleMultiplier(t)
14: θt ← θt−1 − ηt(αm̂t/(

√
v̂t + ϵ) + λθt−1

15: end while
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3 Concept

This thesis investigates whether the domain gap arising in SGG tasks—when models are
trained on simulated data but evaluated on real-world data—can be effectively bridged by
leveraging the learned latent space representations, without altering or adapting the input
data. Specifically, the study examines whether relational knowledge learned in simulation
can transfer to real-world scenes purely through architectural and training strategies,
without requiring explicit domain adaptation techniques at the input or data level.

The primary research objectives are:

1. To explore whether latent-space learning can bridge the domain gap in SGG.

2. To identify challenges that arise in such a transfer, including whether certain rela-
tionship types (e.g., spatial vs. functional) are inherently harder to generalize.

3. To evaluate the practical utility and scalability of this approach for future research
or applications.

The RelTR model [CYR23] is selected as the foundation due to its transformer-based
architecture and efficient inference performance. While inference speed is not the central
focus of this thesis, it was an important factor in prior research, where SGG models were
used to define semantic similarity metrics for image comparison—such as loss functions
in generative models. In the context of the nxtAIM project [Rei24], training generative
models—particularly Stable Diffusion—relies on extensive Graphics Processing Unit (GPU)
resources within the cluster infrastructure of Forschungszentrum Jülich. Maximizing GPU
utilization is critical to ensure training efficiency and to avoid unnecessary resource
consumption. Consequently, if SGG models are employed as part of a loss function in such
training pipelines, its computation must be as fast as possible to prevent it from becoming
a bottleneck [Cite Sabrina].

The architectural design of RelTR makes it particularly well-suited for modular training,
as it is built upon the DETR [CMS+20], allowing for independent training of the object
detection and relationship prediction components. This modularity enables a hybrid
training strategy, where the object detection module can be trained on real-world data
sets (to preserve visual grounding), and the relationship module can be trained on rich,
fully-annotated synthetic data.

The model is divided into two functional components:
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1. Entity Detection Module: Responsible for detecting objects, predicting bounding
boxes, and classifying entities. This component will be trained on a real-world data
set such as CityScapes to ensure robust grounding in natural visual scenes.

2. Relationship Detection Module: Responsible for predicting pairwise relationships
between detected entities (e.g., car - on right lane of - road, person - on - sidewalk).
This module will be trained on synthetic data generated in the CARLA simulator,
which provides dense and consistent relationship annotations.

Two key strategies will be implemented and compared to investigate how relational features
can generalize across domains:

1. Sequential Freeze Strategy:

1.1 The entity detection module is first trained on real-world data and then frozen.

1.2 The relationship prediction module is subsequently trained on synthetic data.

1.3 A variant of this approach will also be explored where only the encoder is frozen,
and the decoder layers (which integrate entity and relationship features) are
fine-tuned during relationship training.

2. Data set Switch Strategy:

2.1 A conditional training loop is implemented: real-world samples are used to
update only the entity module, while synthetic data updates both modules.
This strategy encourages a gradual alignment of latent feature spaces between
the domains.

2.2 Additionally, a semi-supervised variant will be introduced using pseudo-labels
generated from the Sequential Freeze model to augment real-world relationship
annotations.

The evaluation will proceed in two phases:

1. Simulated Test Set Evaluation: Each model variant will first be evaluated on a
held-out CARLA test set to establish an upper bound for relationship prediction
performance.

2. Real-World Benchmark Evaluation: A custom, hand-annotated data set of real-world
images will be created, annotated with the same relationship ontology as the CARLA
data set. Although small in size, this data set will serve as the main benchmark to
assess how well the model transfers relational knowledge to real-world domains.
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Standard SGG metrics will be used for evaluation, including:

1. Recall@K: Measures whether ground truth relationships are ranked among the top-K
predicted ones, for each class.

2. Mean Recall@K: Evaluates the model’s ability to predict a diverse set of relationships,
for all classes.

Furthermore, attention map visualization and analysis will be performed on the relationship
prediction module to interpret how and where the model focuses during inference, helping
to identify failure cases and interpret learned features.
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4 Related Work

Sim2Real transfer is a widely researched approach in machine learning, particularly in
Reinforcement Learning (RL), computer vision and robotics. Central challenges in this
field include bridging the domain gap between synthetic and real-world data, addressing
limited access to labeled real data, and improving the generalization of learned models
across domains. Prominent strategies include transfer learning, domain adaptation, domain
randomization, and hybrid training with synthetic and real data.

4.1 Generalization and Domain Adaptation

A key line of research focuses on generalization via simulation. For instance, [KBK+19]
propose a model that first learns perception and task-specific policies in simulation, then
transfers the learned perception layers to a real-world reward predictor. Their method,
tested on autonomous drone navigation, significantly outperformed alternative transfer
learning strategies. Similarly, [ZQW20] provide a comprehensive survey of Sim2Real
transfer techniques in deep RL, covering approaches such as zero-shot transfer, domain
adaptation, and domain randomization. In zero-shot transfer, models trained in high-
fidelity simulators are directly deployed in real-world scenarios. Domain adaptation seeks to
explicitly align source (simulated) and target (real) domains, often via adversarial training
or feature space alignment. Domain randomization enhances robustness by introducing
diverse variations—such as lighting, textures, and noise—into the simulation, encouraging
models to generalize better to unseen real-world data.

4.2 Transfer Learning with Synthetic Data

Transfer learning has proven especially effective when real-world annotated data is scarce.
In fault diagnosis, [ALZ+23] show that models trained solely on simulated data can
generalize effectively to real-world scenarios. In manufacturing, [TGH+18] train models on
synthetic process simulations before fine-tuning on real experimental data, significantly
accelerating learning and improving performance.

More generally, [Rog23] analyze the effectiveness of synthetic data for model training. Their
findings suggest that while synthetic data is often sufficient for training, hybrid strate-
gies—combining real and simulated data—typically yield better performance. Similarly,
in financial anomaly detection, [SVN23] demonstrate that synthetic data can mitigate
class imbalance and data sparsity, though they also caution against overfitting to synthetic
distributions or adversarial exploitation.
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4.3 Domain Randomization

Domain randomization is a widely adopted technique to narrow the Sim2Real gap.
[TPA+18] train object detection models using highly varied synthetic images, randomizing
lighting, object textures, and camera poses. They show that fine-tuning on a small amount
of real-world data can result in accuracy levels comparable to models trained purely on real
data. Likewise, [TFR+17] demonstrate that domain-randomized simulations can enable
deep models trained entirely in simulation to perform well on real-world object grasping
and detection tasks.

4.4 Simulation in Autonomous Driving

Simulation plays a central role in autonomous driving research, offering a safe, control-
lable, and repeatable environment for the development and evaluation of decision-making
algorithms. One such simulator, also used in this thesis, is CARLA [DRC+17]. Driving
simulators like CARLA enable the definition of diverse traffic scenarios and the generation
of synthetic sensor data, relying on underlying physics engines to approximate realistic
vehicle and environmental behavior. Despite their utility, these simulators generally pro-
duce deterministic outcomes and may lack the variability present in real-world driving
situations [CZY+24].

Beyond traffic simulation, such platforms have proven useful for tasks like scene graph
extraction. For instance, [YMM+22b] proposed an extraction pipeline—conceptually similar
to the one preliminarily developed in this thesis—that takes advantage of the simulator’s
internal access to ground-truth metadata (e.g., precise object locations and class labels)
to construct structured representations of traffic scenes.

In addition to scenario testing, simulation is increasingly recognized as a scalable and
safe approach to data generation. [ZWBR+24] explore the use of generative AI to synthe-
size training data that bridges the gap between simulated and real domains. Similarly,
[YLWX18] present a real-to-virtual domain unification strategy, where real-world driving
data is mapped into a simplified virtual representation. This transformation reduces visual
complexity and supports domain-invariant learning for downstream tasks such as control
prediction.

Recent advances in generative AI have further expanded the simulation toolbox. For
example, [ZLX+24] demonstrate how Neural Radiance Fields (NeRF) can be employed
to reconstruct Light Detection and Ranging (LiDAR) point clouds, offering a promising
approach to increase diversity and realism in sensor data. These developments highlight
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the growing relevance of simulation and generative methods in addressing safety and data
annotation challenges in autonomous driving research.

4.5 Distinction from Existing

This thesis differentiates itself from the previously mentioned related work due to the
nature of SGG models. Traditional SGG methods typically follow a multi-stage pipeline,
decomposing the task of SGG into sub-tasks such as object detection, relation graph
construction, and relation prediction. In recent years, however, one-stage methods have
emerged that aim to directly predict scene graphs from images [LZZ+24]. Nevertheless,
in the case of the RelTR model, which is considered a one-stage method, the following
holds true: the model first detects objects in an image and then predicts the relationships
between them [CYR23]. This thesis leverages this characteristic to bridge the Sim2Real
gap. Rather than relying on techniques to make simulated data usable throughout the
entire training process, this thesis focuses on the transition point in the model, from object
detection to relationship prediction, and uses this stage to bridge the gap between real
and simulated input data.

To date, the challenge of domain transfer in SGG has received limited attention. The only
directly relevant work found is by [PDL+21], who also attempt to align real and simulated
domains using the latent space of an encoder. However, their method relies on modifying
the simulated input appearance to mimic real-world images, and their relationship ontology
is limited to simple positional predicates (e.g., left of, behind, in front of). In contrast,
this thesis focuses on preserving the input space and instead aligning latent relational
representations between domains.
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5 Data set

In this thesis, two distinct data sets were utilized for training the model, each selected
to fulfill a specific purpose in assessing its performance and generalization capabilities.
The following subsections present a comprehensive description of their composition and
annotation methodologies, followed by an outline of the corresponding baseline model
training and evaluation procedures.

5.1 Real-World Data set

The CityScapes data set [COR+16] is a large-scale benchmark focused on semantic un-
derstanding of urban street scenes. It provides high-resolution RGB images with dense
pixel-level annotations for 30 visual classes, including both semantic and instance-level
labels. The data set comprises 5,000 finely annotated images and an additional 20,000
images with coarse annotations, collected across 50 different cities during daytime and
under favorable weather conditions.

Although originally designed for semantic segmentation, where each pixel is assigned a
semantic class label, this thesis repurposes the CityScapes data set for object detection
using the RelTR model. In contrast to segmentation, object detection requires predicting
tight bounding boxes around individual object instances, each associated with a class
ID. In this work, CityScapes is used to train the first part of the RelTR model, which is
responsible for entity (object) detection.

Other data sets such as KITTI [GLU12] and nuScenes [CBL+19] were considered. However,
these contain a limited set of object categories and often exclude critical classes such as
road, sidewalk, or ground. To overcome these limitations, the CityScapes segmentation
maps were leveraged to generate bounding box annotations.

The conversion process is illustrated in Figure 10. Starting from the original RGB image
(a), the semantic (b) and instance (c) segmentation masks are used to generate bounding
boxes (d) via contour detection and color-based class extraction. The following algorithm
was implemented to generate the bounding boxes:
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Algorithm 4 Bounding Box Generation from Semantic and Instance Masks
Require: Paths to semantic mask image Pclass and instance mask image Pinstance

1: class_image← ReadImage(Pclass)
2: instance_image← ReadImage(Pinstance)
3: instance_ids← UniqueValues(instance_image)
4: bounding_boxes← [ ]
5: for each instance_id in instance_ids do
6: mask ← (instance_image == instance_id)
7: contours← FindContours(mask)
8: for each contour in contours do
9: (x, y, w, h)← BoundingRect(contour)

10: color_rgb← class_image[row(contour), col(contour)]
11: class_label← CITYSCAPES_CLASSES[color_rgb]
12: if class_label ̸= "void" then
13: Append {instance_id, class_label, (x, y, w, h)} to bounding_boxes
14: end if
15: end for
16: end for
17: return bounding_boxes

(a) Original RGB image (b) Semantic segmentation mask

(c) Instance segmentation map (d) Generated bounding boxes

Figure 10: Conversion of CityScapes annotations into bounding boxes. Starting from the
raw RGB input (a), semantic and instance masks (b) and (c) are used to generate tight
bounding boxes for object detection (d).

Figure 10 shows the full pipeline, including the generated bounding boxes used for training.
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5.1.1 Class Filtering and Renaming

To ensure compatibility between CityScapes and the custom data set generated using the
CARLA simulator, additional pre-processing steps were applied. Specifically, classes not
represented in the CARLA data set were removed to reduce noise and prevent the model
from learning irrelevant categories.

Furthermore, some class labels were renamed to match the taxonomy used in CARLA.
For example, the parking class was re-labeled as ground, and the rider class was merged
into the more general person category. These changes ensured consistency across data sets
and reduced semantic ambiguity.

All class mapping decisions are summarized in Table 2.

Table 2: Mapping of CityScapes classes to Carla-compatible labels

Original CityScapes Label Mapped Carla Label
parking ground
rider person
caravan removed
trailer removed
train removed
terrain removed
wall removed
fence removed
sky removed
building removed
vegetation removed
tunnel removed
rail track removed
guard rail removed

5.1.2 Train-Val-Test Split

While CityScapes provides a predefined train-validation-test split tailored for semantic
segmentation, this split was not optimal for object detection in the context of this thesis,
because the test data set does not include the necessary labeling to extract bounding box
information as described in Section 5.1. Therefore, a custom split was used: all cities, from
the train and validation data sets were combined into the training set, except for Weimar
and Zurich, which were used for validation and testing, respectively.
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5.1.3 Initial Evaluation on CityScapes

Training the first stage of the RelTR model exclusively on CityScapes resulted in limited
qualitative and quantitative performance. A metric evaluation framework was implemented
based on standard object detection practices, including precision and recall [NZS23]:

Precision =
TP

TP + FP
(5.1a)

Recall =
TP

TP + FN
(5.1b)

Predictions were matched to ground truth boxes using IoU. A prediction was considered a
true positive if its IoU exceeded a threshold (e.g., 0.50) and its class label matched the
ground truth. False positives and false negatives were defined accordingly.

Precision-Recall (PR) curves were computed for IoU thresholds ranging from 0.50 to 0.95
by varying the prediction confidence threshold. Figure 11 shows these PR curves, which
reveal the model’s performance under varying localization strictness.

A clear performance drop with increasing IoU thresholds suggests that the model often
makes semantically correct predictions, but has difficulty with precise localization and
capturing all relevant objects in the scene. High precision and low recall indicate a
conservative prediction style. The low overall recall suggests that many objects are missed.

Visual comparisons in Figure 12 and Figure 13 further confirm this trend, showing sparse
predictions, but aligned attention for the most confident predictions.

5.1.4 Data set Expansion with BDD100K and Mapillary

To improve detection performance, two additional data sets with instance segmentation
were integrated:

1. BDD100K [YCW+20], contributing 8,000 converted images.

2. Mapillary Vistas [NOBK17], adding 20,000 images.

The same conversion process (Algorithm 4) was applied to these data sets. Since high-
quality data were now abundantly available, the 20,000 coarsely annotated CityScapes
images were excluded.

This resulted in a curated data set of 33,000 finely annotated images used for training,
validation, and testing.
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Precision-Recall Curve for CityScapes Set
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Figure 11: Precision-Recall curves for the CityScapes test set at various IoU thresholds
ranging from 0.50 to 0.95.

(a) Prediction Output (b) Ground Truth

Figure 12: Comparison of prediction and ground truth bounding boxes.
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query id: 8 query id: 88 query id: 61 query id: 37

Figure 13: Attention Heatmaps on CityScapes

5.1.5 Data set Distribution Analysis

Figure 21 shows the distribution of object instances and images per class across the training,
validation, and test sets. Classes like pole, car, and person dominate the object instance
distribution. While classes such as truck and especially bridge are underrepresented.

Most images contain at least one instance of road, pole, or sidewalk, confirming their
ubiquity in urban scenes.

This distribution pattern is consistent with expectations, given that the data set is
automotive-focused. Naturally, objects like cars, traffic signs, roads, and pedestrians are
highly prevalent, while less commonly encountered elements in traffic scenes — such as
bridges or trucks — occur less frequently.

5.1.6 Final Training Setup

Training was conducted using the default hyperparameters provided in the original RelTR
paper [CYR23], with no additional tuning. Learning rate scheduling followed the strategy
used in DETR [CMS+20], including a step drop after 400 of the 500 total training epochs.
A detailed configuration overview, including system specifications and batch sizes, is
provided in Table 3.

Using the same evaluation method as described earlier, the model’s performance on the
real-world data set is shown in Figure 16, where PR curves are plotted across IoU thresholds
from 0.50 to 0.95. For thresholds between 0.50 and 0.90, precision remains consistently
high, exceeding 0.8 across most recall levels. Each curve starts at a precision of 1.0 and
gradually declines toward 0.9 as recall increases, indicating that the model produces
reliable, high-confidence predictions and maintains accuracy even as more predictions are
considered by lowering the confidence threshold.
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Classes
pole 113.492
car 75.505
side walk 44.666
road 40.930
traffic sign 40.644
person 38.735
traffic light 25.450
bicycle 10.583
ground 9.555
truck 4.765
bridge 1.432

(a) Object counts per class in the train set

Classes
pole 1.729
car 1.264
side walk 1.109
person 859
road 618
traffic sign 578
bicycle 220
traffic light 133
ground 35
truck 10

(b) Object counts per class in the valid set
Classes
pole 1.928
car 1.387
person 1.309
side walk 1.002
road 793
traffic sing 660
ground 466
traffic light 420
bicycle 302
truck 40
bridge 20

(c) Object counts per class in the test set

Figure 14: Distribution of object instances per class in the real-world data set. The top
plot shows the class distribution in the training set, while the two plots below represent
the validation and test sets, respectively

At an IoU threshold of 0.95, a distinct deviation from this trend is observed. The curve
begins at a substantially lower precision of around 0.3 and rises slowly to approximately
0.7. This behavior suggests that, under such a strict spatial alignment requirement, even
the most confident predictions often fall short in terms of bounding box accuracy, although
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(a) Number of images containing at least one instance of each class in the training set
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(b) ...in the validation set
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(c) ...in the test set

Figure 15: Image distribution per object class in the real-world data set. The plots
indicate how many images contain at least one instance of each object class in the
training (top), validation (bottom left), and test sets (bottom right).

classification remains largely correct. Since the target application does not require highly
precise localization but rather correct detection and classification, IoU thresholds between
0.50 and 0.80 are more relevant for evaluating practical performance.

Overall, the model exhibits robust detection behavior within the practically relevant IoU
range. High precision across these thresholds indicates a low false positive rate, while the
performance drop at 0.95 IoU is not indicative of a critical flaw but rather reflects an
evaluation criterion that surpasses the necessary spatial granularity for the intended task.

Visual comparisons in Figure 17 show the improvement made by the expansion of the data
set.
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Parameter Value
Encoder layers 6
Decoder layers 6
Hidden dimension 256
Feedforward dimension 2048
Number of attention heads 8
Number of entity queries 300
Number of triplets 200
Dropout 0.1
Optimizer AdamW
Learning rate (base) 1× 10−4

Learning rate (backbone) 1× 10−5

Weight decay 1× 10−4

Epochs 500
Learning rate drop epoch 400
Batch size 12
GPUs 8 × NVIDIA A100 (40 GB)
Framework PyTorch 2.1.2
System JUWELS Booster (Forschungszentrum Jülich)

Table 3: Training configuration and hyperparameters used for training RelTR model on
the curated data set.

5.2 CARLA Data set

One of the main contributions of this thesis is the creation of a new data set based on the
CARLA simulator [DRC+17]. This data set captures semantic relationships between traffic
participants and static infrastructure elements in the form of subject-predicate-object
triplets. The data set was generated using a custom annotation tool developed as part of a
previous student research project at Coburg University. While the internal workings of the
tool lie beyond the scope of this thesis, its core functionalities are briefly outlined below.

The data set was generated using the CARLA simulator, specifically the ScenarioRunner
[CAR23] extension, which provides a range of predefined traffic scenarios. These include
vehicle-following sequences, turning maneuvers at intersections, and interactions with
cross-traffic. Each scenario was recorded from seven different camera perspectives: rear
view (centered), rear-left and rear-right, side views (left and right), and front-left and
front-right. In addition to RGB data, segmentation, instance, and depth information were
also recorded to support the annotation pipeline.
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Precision-Recall Curve for Merged Set
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Figure 16: Precision-recall curves for the real-world test set at various IoU thresholds
ranging from 0.50 to 0.95.

(a) Prediction output before expansion (b) Prediction output after expansion

Figure 17: Comparison of prediction before and after expansion

The annotation tool processes each recorded frame by extracting metadata from the
simulator, computing two-dimensional bounding boxes, and assigning semantic labels
based on object categories and positions. When instance IDs are unavailable, image
masks are used to determine object extent. The tool further refines bounding boxes for
certain object types and enforces annotation consistency using a predefined lookup table.
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All annotations are exported in structured JSON format, enabling efficient access and
integration with machine learning pipelines.

The definition of annotated relationships was guided by the overarching research goal of
Work Package 1.1 of the funded project nxtAIM [Rei24], which seeks to establish semantic
metrics for comparing real and generated images in the autonomous driving domain. The
central question driving this effort was: Given a model that generates photorealistic images,
which semantic relationships between objects must be preserved to consider the image valid
or useful for downstream tasks?

This guiding question led to the formulation of specific relational predicates, each motivated
by typical traffic scenarios and spatial constraints:

Spatial placement of infrastructure elements: For instance, the relationship pole on side
walk ensures that poles appear in plausible positions.

Attachment relationships: traffic sign attached to pole and traffic light attached to pole
ensure that signs and lights appear mounted to supporting structures.

Vehicle-road alignment: car on right/left side of road and
car on left/middle/right lane of road enforce proper lane placement.

Vehicle-vehicle alignment: The relationship car on same road line as ensures that vehicles
traveling in a platoon are aligned.

Relative positions: object in front of car and object behind car capture critical proximity
relationships relevant for collision avoidance.

Driving maneuvers: car turning left/right on road represents dynamic interactions during
turning events.

Collisions: The relationship car is hitting object encodes the occurrence of physical contact
and serves as a marker for critical failure cases.

These relational labels collectively capture both structural and dynamic elements of realistic
traffic scenes, making the data set suitable for evaluating SGG in autonomous driving
contexts.

5.2.1 Data set Statistics

To provide a deeper understanding of the generated data set, several statistics are presented
and critically analyzed below.

Figure 18(a) shows the overall distribution of all entity classes across the data set. It
is evident that static infrastructure elements dominate the scenes, with pole instances
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representing 37.06% of all entities, followed by sidewalks and cars. Other prominent classes
include traffic light (11.18%) and road (9.94%). In contrast, dynamic elements such as
person (0.57%), bicycle (0.34%), and truck (0.18%) are considerably less frequent. This
skew towards static elements reflects the nature of urban scenarios in CARLA but reduces
the data set’s overall diversity.

Figure 18(b) displays the distribution of entity classes used as subjects in annotated
relationships. Here, pole accounts for 47.2% of all subject entities, followed by car (23.4%)
and traffic light (22.4%). Dynamic entities such as person (1.1%), truck (0.4%) and bicycle
(0.4%) remain underrepresented, suggesting that the majority of relational dynamics are
based on static infrastructure and vehicle interactions, rather than complex human-object
or vehicle-vehicle relations.

Figure 18(c) illustrates the distribution of classes serving as objects in relationships.
Sidewalk (33.51%), pole (26.91%), and road (19.88%) dominate, reinforcing the prevalence
of static environmental elements. Dynamic objects such as car (4.12%) and bicycle (0.3%)
make up only a minor fraction. This strong imbalance is expected but noteworthy for later
model evaluation.

Overall Classes
pole 215.431
side walk 97.404
car 79.932
traffic light 64.967
road 57.777
ground 43.896
traffic sign 15.053
person 3.322
bicycle 1.955
truck 1.070
bridge 453

(a) Distribution of all entity classes across the data set

car 67.944
traffic light 64.967
traffic sign 15.053
person 3.294
bicycle 1.073
truck 1.070

Subject Classes
pole 137.229

(b) Distribution of entity classes as subjects

pole 78.202
road 57.777
ground 43.896
car 11.988
bicycle 882
bridge 453
person 28

Object Classes
side walk 97.404

(c) Distribution of entity classes as objects

Figure 18: Entity class distributions across the data set

Figure 19 presents the frequency distribution of all annotated relationship types. The most
frequent relationships involve static interactions, such as pole on sidewalk and traffic light
attached to pole. Relationships involving dynamic objects are, as anticipated, much less
common. Given the scenario design, this imbalance is acceptable.
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Figure 19: Frequencies of all annotated relationship types

A more concerning imbalance is observed among lane-specific relationships. On left lane of
(5032 occurrences) and on right lane of (5859 occurrences) are significantly more frequent
than on middle lane of (1698 occurrences), which could bias the model towards side lanes
in multi-lane scenes.

Relationships describing turning maneuvers are particularly underrepresented, with only
236 instances of turning right on and 105 instances of turning left on. These low frequencies
pose a risk that the model may not adequately learn such interactions, despite their
relevance in real-world scenarios.

Further imbalance is found among road-side placement relations. While on right side of
(15,074) and on left side of (9263) are relatively common, on opposing side of is annotated
only 5287 times. Nevertheless, the visual distinction between these categories may reduce
the impact of this imbalance on model performance.

Lastly, the relationship is hitting is extremely rare, with just 50 annotations. This class was
deliberately included to illustrate that synthetic simulation environments can represent
ethically challenging interactions which would be impractical or unethical to capture in
real-world data sets.

In summary, while the data set provides a comprehensive foundation for modeling scene
graphs in urban environments, it suffers from significant class imbalances—particularly
between static and dynamic elements, and across relationship types. These imbalances
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Figure 20: Visual example of the applied augmentation techniques

motivated the application of targeted augmentation strategies, which are discussed in the
next section.

5.2.2 Data set Augmentation

To address the data set’s class imbalance—particularly concerning underrepresented
relationship classes such as turning left on, turning right on, and on middle lane of —a
targeted data augmentation strategy was implemented.

The process starts by identifying all frames containing at least one instance of a rare
relationship. For each of these frames, a set of augmentation techniques was applied
independently to the original image, aiming to increase data diversity while preserving the
underlying semantic structure. The following transformations were used:

• Addition of random Gaussian noise

• Random brightness adjustment

• Random contrast adjustment

• Application of a random blur filter

Each transformation produced one augmented variant of the original image, resulting in
four new samples per frame. By applying these augmentations independently, cumulative
distortions were avoided, and the integrity of spatial relationships within the scene was
maintained.

Figure 20 illustrates an example from the augmentation process. The original image is
shown alongside its four augmented versions, highlighting the visual diversity introduced
through this pipeline.
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5.2.3 Impact of Augmentation on Data set Distribution

The targeted data augmentation strategy led to measurable improvements in the distribu-
tion of both entity classes and relationship types.

For the overall entity distribution, a slight increase in dynamic object categories was
observed. The proportion of person instances rose from 0.57% to 0.86%, bicycle instances
increased from 0.34% to 0.75%, and truck instances grew from 0.18% to 0.38%. These shifts
reflect the focus on augmenting frames containing underrepresented dynamic elements.

More substantial effects were achieved in the distribution of relationship classes. The
number of instances of the on middle lane of relationship more than doubled, increasing
from 1,608 to 3,957 occurrences. Similarly, the frequencies of the previously rare turning
right on and turning left on relationships increased from 236 to 828 and from 105 to
348, respectively. Meanwhile, frequently occurring classes such as on right lane of (5,859
occurrences) and on left lane of (5,032 occurrences) remained stable, as they were not
selected for augmentation.

Although it would have been technically feasible to further expand the data set by repeatedly
augmenting the same scenes with additional variations, this approach was intentionally
avoided. Excessive duplication would have increased the data set size without contributing
meaningful new information and might have introduced redundancy, reducing the data
set’s effectiveness during model training. The chosen augmentation scope therefore strikes
a balance—enhancing diversity in critical areas without inflating the data set unnecessarily.

Overall, the adjustments successfully mitigated class imbalance, particularly for dynamic
interactions and lane-specific relationships. The resulting data set is better equipped to
support robust learning of rare but semantically important relational patterns, thereby
improving model generalization.

5.2.4 Baseline Performance on Simulated Data

To establish a performance baseline for subsequent Sim2Real experiments, the complete
RelTR model was trained and evaluated exclusively on the simulated data set. The training
followed the same hyperparameter configuration as outlined in Table 3. Evaluation was
performed using the widely adopted Recall@K metric for SGG, which measures the fraction
of ground truth relationships that appear among the top-K highest-confidence predictions
[LZZ+24]. Although the Precision@K metric is also commonly reported [CYR23], it is
omitted in this thesis, as the primary objective is to determine whether and how domain
gap closure can be achieved, rather than to assess the absolute precision of the approaches.

57



5 Data set

Overall Classes
pole 273.152
side walk 123.183
car 101.365
traffic light 80.624
road 73.506
ground 59.765
traffic sign 18.727
person 6.399
bicycle 5.588
truck 2.848
bridge 453

(a) Entity distribution across all classes after
augmentation

car 82.234
traffic light 80.824
traffic sign 18.727
person 6.355
bicycle 3.058
truck 2.848

Subject Classes
pole 175.959

(b) Distribution of entity classes serving as
relationship subjects.

pole 97.193
road 73.506
ground 59.765
car 16.131
bicycle 2530
bridge 453
person 44

Object Classes
side walk 123.183

(c) Distribution of entity classes acting as
relationship objects.

Figure 21: Updated entity distributions after targeted augmentation

0 25000 50000 75000 100000 125000 150000 175000
98
348
380
505
828
1490
2479
2635
3092
3242
3957
5032
5859
6494
10289
11498
12889

20462
97193

184035on
attached to

on right side of

same road line as
on left side of

on opposing side of
on right lane of

parking on

on left lane of
on middle lane of

driving from left to right
driving from right to left

infront of
riding

behind
turning right on

next to
driving on

turning left on
is hitting

Frequency

Figure 22: Relationship class frequencies after augmentation
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Figure 23: Visual representation of the criteria for a correct prediction. For PhrDet rock
near beach (orange) and SGDet dog has head (red)

Common values for K include 50 and 100; this work additionally includes the more stringent
setting of K=20 to enable direct comparison with the original RelTR paper [CYR23].

SGG models are typically evaluated across four standard tasks:

1. Phrase Detection (PhrDet): Predicts a subject–predicate–object triplet and localizes
the entire relationship with a bounding box that overlaps the ground truth by at
least 50%.

2. Predicate Classification (PredCls): Predicts the relationship between object pairs,
given ground truth object locations and labels.

3. Scene Graph Classification (SGCls): Classifies both objects and relationships, given
ground truth object locations.

4. Scene Graph Detection (SGDet): Detects and classifies both objects and relationships,
requiring predicted object bounding boxes to overlap with the ground truth by at
least 50%. While referred to as SGG in literature [LZZ+24], this thesis adopts the
SGDet naming convention used in [CYR23] to better distinguish between the class
of models and the task.

Visual representations of the criteria for PhrDet and SGDet are given in Figure 23.
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This evaluation focuses on tasks that do not rely on ground truth object input, specifically
PhrDet and SGDet. Results are compared against those reported in the original RelTR
work [CYR23], as well as expectations derived from the distribution of relationship classes
in the simulated data set.

Recall@K PhrDet SGDet
Original Simulated Original Simulated

20 Not reported 63 21.2 40
50 34.5 68 27.5 41
100 39.8 69 Not reported 41

Table 4: Comparison of Recall@K for PhrDet and SGDet between the original RelTR
model and the version trained on the simulated data set.

The results indicate that PhrDet consistently achieves higher recall than SGDet, which
is expected due to its less stringent evaluation criteria. Although overall recall remains
moderate, the model performs competitively given the smaller number of object and
relationship classes, as well as the reduced data set size compared to [CYR23]. Furthermore,
recall scores demonstrate minimal improvement as K increases. This suggests that the
model’s high-confidence predictions dominate the output and that adding lower-ranked
predictions provides little additional value.

To further investigate model behavior, per-class recall was computed for selected relation-
ship types.

Several notable patterns emerge from the per-class recall. The relationship on shows
a pronounced gap between PhrDet and SGDet. This likely stems from bounding box
flexibility for broad entities such as roads or sidewalks. As illustrated in Figure 24 (top)
and Figure 24 (bottom), predictions may semantically align with the ground truth but fail
to meet the stricter SGDet threshold.

Positional relationships such as on right side of and on middle lane of achieve near-perfect
accuracy in both tasks. In contrast, relationships involving relative motion direction—such
as turning right on and turning left on—are predicted poorly. This likely reflects the
difficulty of inferring motion direction from static images. Interestingly, recall for turning
right on is zero across all K values. While the class is underrepresented, as shown in
Figure 22, frequency alone does not fully account for the discrepancy.

Notably, rare relationships can still be learned effectively. The relationship is hitting
appears only 98 times in the data set but achieves perfect PhrDet recall. However, SGDet
recall remains low due to bounding box inaccuracies. This suggests that even infrequent
relational patterns can be captured by the model if visually distinct.
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Table 5: Per-class recall across tasks and K values

Class K SGDet PhrDet

on
20 15.0 51.9
50 17.2 61.7
100 17.7 66.4

on right side of
20 87.8 98.1
50 87.9 99.7
100 87.9 99.8

on middle lane of
20 98.9 100
50 98.9 100
100 98.9 100

turning right on
20 0.0 0.0
50 0.0 0.0
100 0.0 0.0

turning left on
20 16.6 33.9
50 16.6 33.9
100 16.6 33.9

is hitting
20 2.6 100
50 2.6 100
100 2.6 100

same road line as
20 16.1 21.2
50 16.1 46.3
100 16.1 47.0

In addition to recall-based evaluation, qualitative analysis of the model’s behavior was
performed by visualizing attention maps. Following the methodology in [CYR23], the
cross-attention layer of the DVA module (Equation 2.17) was analyzed. This component
directly influences predicate prediction (Equation 2.23) and integrates visual and relational
cues, making it particularly informative for understanding prediction decisions.

Figure 25 presents attention maps for a simulated scene. For query ID 161, predicting on
right side of, attention is sharply focused on road markings on the right, supporting the
plausibility of the prediction. Query ID 16 predicts on between a pole and a sidewalk,
with correct relationships and bounding boxes, also attention appears to be focused on
the correct side walk. Query ID 179 demonstrates a clear failure: attention is placed on a
car, but the model predicts a relationship (riding) between a person and a bicycle, neither
of which is present.
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Figure 24: Ground truth (top) against inference (bottom) for the baseline model.
Bounding boxes and relationship graph where filtered by hand to only show the
relationship triplet for pole on side walk for the relevant subjects and objects

5.2.5 Conclusion

The baseline evaluation of the RelTR model trained exclusively on the simulated data
set reveals both strengths and limitations in its ability to learn and generalize relational
reasoning in structured visual environments. Quantitatively, the model achieves moderate
performance on PhrDet and lower scores on SGDet, with minimal improvements as K
increases on Recall@K metrics. This indicates that while the model is confident in its
top predictions, it frequently fails to produce sufficiently accurate object localizations to
satisfy the stricter criteria of SGDet.

Per-class analysis demonstrates that spatially grounded and visually salient relationships
such as on right side of and on middle lane of are learned reliably, achieving near-
perfect recall even under SGDet conditions. In contrast, relationships requiring inference
of dynamic properties (e.g., turning right on) or subtle positional semantics (e.g., same
road line as) remain challenging. These difficulties stem from a combination of data set
imbalance, visual ambiguity, and the inherent limitations of static imagery for representing
motion-related interactions. Notably, the model achieves high recall for visually distinct
but infrequent relationships such as is hitting in the PhrDet task, indicating that even
rare classes can be learned when sufficient visual cues are present.

62



5 Data set

query id: 161 query id: 16 query id: 178

person riding bicyclepole on side walkcar on right side of road

Figure 25: Attention heatmaps of the baseline model for simulated scene. Query ID refers
to the index of the query in the transformer decoder output. Heatmaps correspond to the
attention maps produced by the DVA module (Equation 2.17), where the attention map
on the top is the subject and the lower one is the object branch.
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Qualitative inspection of cross-attention maps supports these observations. Accurate pre-
dictions are typically accompanied by focused attention on semantically meaningful regions
(e.g., lane markings, object contours). Hallucinated predictions—such as relationships in-
volving absent entities—further highlight the potential for overfitting to simulation-specific
artifacts or insufficient variation in training viewpoints.

Taken together, these findings provide a robust performance baseline for subsequent
Sim2Real transfer investigations. Importantly, they also address the first research question
posed in this thesis: Are the annotated relationships in the simulated data set learnable by
the selected model? The empirical results demonstrate that this question can be answered
affirmatively. The RelTR model is capable of learning both frequent and infrequent
relationships, provided that they are visually grounded and sufficiently represented within
the data set. This confirms the effectiveness of the annotation scheme and supports
the validity of using the simulated data set for relational reasoning tasks in downstream
applications. The only notable exception is the turning right on relationship, which remains
difficult for the model to learn reliably—likely due to its inherent visual ambiguity and
lower representation in the data set, despite augmentation efforts.
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6 Sim To Real Approaches

To address the gap between simulation and the real-world domain, two transfer learning
strategies were employed, each implemented in multiple variants. These approaches differ
in the extent to which pre-trained knowledge is retained or adapted during training on
real-world data. The strategies, along with their respective variants, are described and
evaluated in detail in the subsequent sections.

6.1 Sequential Freeze Strategy

In this approach, the model is initialized with weights pre-trained on a real-world data
set (Section 5.1), maintaining a strict separation between the entity detection part of the
model (feature extractors and shared components) and the task-specific layers, thus this
approach is entitled as Frozen Entity Detection (FED). To ensure the task-specific layers
receive meaningful input, simulated data annotated only with entity classes and bounding
boxes were added to the real-world data set. During training, the model was validated
exclusively on a test set containing real data, and the validation loss never exceeded that
of a model trained solely on real-world data.

Pre-trained weights are loaded into the full model; only parameters not included in
the checkpoint are marked as trainable, while all matching parameters are explicitly
frozen by setting requires_grad = False. To further stabilize the frozen compo-
nents, their corresponding submodules are set to evaluation mode (e.g., model.backbone,
transformer.encoder, and entity-related decoder layers). This prevents stochastic
layers such as dropout or batch normalization (if present) from modifying the learned rep-
resentations during training. Only the task-specific layers related to relationship detection
are updated.

Trainable parameters—those not found in the pre-trained checkpoint—are reinitialized
using kaiming initialization for convolutional and linear layers, and constant initialization
for biases and normalization layers. This controlled freezing strategy preserves the core
visual and semantic representations learned from real-world data while enabling effective
adaptation to the simulated domain through the task-specific components. For clarity
on which parameters are frozen or reinitialized, see Table 6, where the module names
correspond directly to those introduced in Section 2.

Training configurations are summarized in Table 3.

Before evaluating on real-world inference data, the model is first tested on the baseline
training data set to enable a controlled comparison assessing the effect of pretraining the
encoder on real data.
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Table 6: Overview of frozen and reinitialized modules in the sequential freeze strategy.

Module Status

Feature Extraction

CNN Backbone Frozen

Transformer Encoder

Encoder Frozen

Transformer Decoder

Entity Layer Frozen
Coupled Self-Attention Initialized
Decoupled Visual Attention Initialized
Decoupled Entity Attention Initialized

Prediction Heads

Entity Class Frozen
Entity Bounding Boxes Frozen
Subj/Obj Class Initialized
Subj/Obj Bounding Boxes Initialized

Table 7: Comparison of mean recall at K for PhrDet and SGDet between the baseline and
FED model

Task K Baseline FED

PhrDet
20 63 45
50 68 48
100 69 48

SGGDet
20 40 42
50 41 43
100 41 43

From Table 7, two key observations emerge: (1) Pre-training the entity detection component
on real-world data improves object localization accuracy, as reflected by higher recall in
the SGDet task, which requires both subject and object bounding boxes to have at least
50% overlap with ground truth. (2) Conversely, performance on the PhrDet task decreases,
possibly because while more precise localization benefits strict spatial relationships, the
frozen entity encoder may lack flexibility to detect a broader variety of relationship
instances.

To investigate further, a per-class recall analysis was conducted for both SGDet and
PhrDet tasks (see Table 8).
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Table 8: Per-class recall values for SGDet and PhrDet across different K values on
simulated data of the baseline and FED model

Class K SGDet PhrDet
Baseline FED Baseline FED

on
20 15.0 44.0 51.9 86.9
50 17.2 45.8 61.7 88.9
100 17.7 46.2 66.4 89.4

on right side of
20 87.8 90.2 98.1 97.3
50 87.9 90.3 99.7 97.4
100 87.9 90.3 99.8 97.4

on middle lane of
20 98.9 0.0 100 0.0
50 98.9 0.0 100 0.0
100 98.9 0.0 100 0.0

turning right on
20 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0

turning left on
20 16.6 94.5 33.9 98.8
50 16.6 94.5 33.9 98.8
100 16.6 94.5 33.9 98.8

is hitting
20 2.6 0.0 100 0.0
50 2.6 0.0 100 0.0
100 2.6 0.0 100 0.0

same road line as
20 16.1 0.0 21.2 18.1
50 16.1 20.5 46.3 21.2
100 16.1 20.5 47.0 21.2

The results in Table 8 support the hypothesis: for relationship classes where the FED
model still produces predictions, recall often improves compared to the baseline. For
example, classes such as on, on right side of, and turning left on show substantial recall
gains. However, some classes (e.g., on middle lane of and is hitting) lose all detection
capability. This suggests that the pre-trained encoder may not have captured certain
semantic nuances necessary for these relationships, likely because these concepts were not
relevant during pre-training on the entity detection task.

A similar but less consistent trend is observed in the PhrDet task. For instance, recall for
the same road line as class deteriorates despite the model still making predictions.

It is important to note that the main motivation for including real data in the encoder
and freezing it was not to improve performance on simulated data but to transfer learned
knowledge for inference on real data.
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Figure 26: Inference results on a CityScapes data set image using the FED model. The
relationship graph was cleaned by hand for better visuals.

Figure 26 illustrates inference by the frozen model on a real-world image from the
CityScapes data set. While the model is not flawless—hallucinations are especially notice-
able in the pole class where it predicts more poles than present—the detected relationships
are mostly accurate and semantically meaningful.

To further assess whether the model maintains meaningful attention patterns, attention
maps were compared with those produced by a model trained solely on simulated data. As
shown in Figure 27, the frozen model produces plausible attention maps. However these
are less sharply focused than the purely simulation-trained model’s attention maps (e.g.,
Figure 25).

Table 9 presents the performance of the model on a small, manually annotated real-world
data set containing relationship annotations. On the SGDet task, performance remains
generally low across all classes, indicating that the predicted bounding boxes often do
not meet the required IoU thresholds for valid triplet matches. This suggests that the
localization component of the model struggles to generalize well to the real-world domain.
In contrast, the PhrDet metric shows comparatively better results, particularly for the
classes on, on right side of, and on left side of. These road-specific spatial relations appear
to transfer reasonably well from simulation to reality, suggesting that the model is able to
learn domain-invariant features for these more common or visually simpler relationships.
However, a significant drop in performance is observed for lane-specific relationships such
as on right lane of and on left lane of. In most cases, the PhrDet score is near zero,
regardless of K. This indicates that either (1) the latent space representations required to
detect such fine-grained spatial relations are not easily transferable between simulation and
real domains, or (2) the amount of annotated training data for these classes is insufficient
to allow the model to generalize effectively.
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Table 9: Per-class recall values for SGDet and PhrDet across different K values on real
data using the FED model

Class K PhrDet SGDet

on
20 41.8 7.3
50 44.8 7.3
100 51.3 7.3

attached to
20 5.2 2.9
50 5.2 2.9
100 8.5 2.9

on right side of
20 42.7 10.8
50 49.5 10.8
100 50.1 10.8

parking on
20 4.1 0.0
50 22.8 0.0
100 56.5 0.0

on left side of
20 71.7 24.7
50 74.0 28.2
100 74.0 28.2

on right lane of
20 0.4 0.0
50 26.0 6.6
100 26.0 6.6

on middle lane of
20 0.0 0.0
50 0.0 0.0
100 0.0 0.0

on left lane of
20 0.0 0.0
50 2.6 0.0
100 2.6 0.0
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query id: 53 query id: 82 query id: 168

traffic light attached to pole pole on ground car on right side of road

Figure 27: Heatmap results on a CityScapes data set image using the FED model. Query
ID refers to the index of the query in the transformer decoder output. Heatmaps
correspond to the attention maps produced by the DVA module (Equation 2.17), where
the attention map on the top is the subject and the lower one is the object branch.

6.1.1 Post-Processing

In addition to the standard RelTR inference pipeline, a post-processing step was developed
to refine bounding box predictions. This step operates on the outputs of the prediction
networks within the entity detection module Classentity and BBoxentity. For each predicted
bounding box produced by the relationship detection module BBoxsub/obj, the algorithm
checks whether there exists a corresponding bounding box from the entity detection module
with an IoU threshold of at least 0.5 and the same class identifier. If such a match is found,
the bounding box from the entity detection module replaces the original prediction.

This refinement procedure was applied to all visual inference outputs of RelTR presented in
this thesis. However, it is important to note that this post-processing step does not influence
any reported metric results. Since the evaluation protocol already counts predictions with
an τ ≥ 0.5 as correct, replacing bounding boxes under these conditions neither improves
nor degrades quantitative performance.
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Algorithm 5 Bounding box refinement post-processing for RelTR
1: Predicted bounding boxes from relationship detection module BBoxsub/obj

2: Predicted bounding boxes from entity detection module BBoxentity

3: IoU threshold τ = 0.5
4: for each bboxrel ∈ BBoxsub/obj do
5: for each bboxentity ∈ BBoxentity do
6: if IoU(bboxrel, bboxentity) ≥ τ and class(bboxrel) = class(bboxentity) then
7: Replace bboxrel with bboxentity

8: break
9: end if

10: end for
11: end for
12: return Updated BBoxsub/obj

6.1.2 Entity Layers Enabeld

This configuration builds upon the setup described in Section 6.1. The model is initialized
with weights pre-trained on a real-world data set. These weights are loaded into the full
architecture, and, in addition to parameters not covered by the checkpoint, the decoder
modules responsible for entity detection are set as trainable. This configuration is referred
to as Entity Layers Enabled (ELE), whereas the encoder remains frozen. An overview of
the resulting parameter configuration is provided in Table 10, while the training setup
and hyperparameters are identical to those in Table 3.

Prior to evaluating on real-world data, the model is first assessed on the synthetic data set
and compared to both the baseline and the configuration from Section 6.1. As shown in
Table 11, this approach leads to a performance decline across all K-values in the SGDet
evaluation task. The ELE variant underperforms compared to both the FED and baseline
setups. But outperformes FED on the PhrDet evaluation task. This could suggest that the
ELE setup resulted in a model outputting more, but potentially less accurate predictions.

This result suggests that changing weights responsible for extracting fine-grained visual
features from the encoder’s output (see Section 2.2) enables to extract potentially more
relevant visual features but decreases accuracy on simulated data input.

Further insight is gained through a per-class evaluation shown in Table 12. While ELE
performs comparably or even better in certain relationships—such as on and on right
side of —some classes such as on middle lane of, is hitting, and turning right on show
no improvement, with recall remaining at zero. These failure cases likely require deeper
semantic understanding or low-level spatial features not provided by the frozen encoder.

Interestingly, ELE substantially outperforms the FED setup on same road line as, but
underperforms on on right side of. This suggests a trade-off effect caused by the difference
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Table 10: Overview of frozen and reinitialized modules in the sequential freeze strategy,
with enabled entity detection layer. Pretrained indicates that those weights are pre-trained
on a real-world data set and are then further changed during training on simulated data

Module Status

Feature Extraction

CNN Backbone Frozen

Transformer Encoder

Encoder Frozen

Transformer Decoder

Entity Layer Pretrained
Coupled Self-Attention Initialized
Decoupled Visual Attention Initialized
Decoupled Entity Attention Initialized

Prediction Heads

Entity Class Pretrained
Entity Bounding Boxes Pretrained
Subj/Obj Class Initialized
Subj/Obj Bounding Boxes Initialized

Table 11: Comparison of mean recall at K for PhrDet and SGDet across Baseline, FED,
and ELE settings

Task K Baseline FED ELE

PhrDet
20 63 45 51
50 68 48 53
100 69 48 53

SGDet
20 40 42 40
50 41 43 40
100 41 43 40

in distribution between simulated and real data—improvement in some relation classes
may come at the cost of others.

Figure 28 shows real-world inference. While both FED and ELE approaches yield correct
predictions, ELE produces more detections overall—some correct, such as identifying
the lane the vehicle is driving on, and some erroneous, such as hallucinated poles in the
distance.
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Table 12: Per-class recall for SGDet and PhrDet tasks across different model variants and
K values on simulated data.

Class K SGDet PhrDet
Baseline FED ELE Baseline FED ELE

on
20 15.0 44.0 50.6 51.9 86.9 85.3
50 17.2 45.8 51.9 61.7 88.9 89.9
100 17.7 46.2 52.2 66.4 89.4 90.9

on right side of
20 87.8 90.2 96.0 98.1 97.3 96.4
50 87.9 90.3 96.1 99.7 97.4 96.7
100 87.9 90.3 96.1 99.8 97.4 96.7

on middle lane of
20 98.9 0.0 0.0 100 0.0 0.0
50 98.9 0.0 0.0 100 0.0 0.0
100 98.9 0.0 0.0 100 0.0 0.0

turning right on
20 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0

turning left on
20 16.6 90.0 90.0 33.9 94.5 100
50 16.6 98.8 90.0 33.9 99.5 100
100 16.6 98.8 90.0 33.9 99.5 100

is hitting
20 2.6 0.0 0.0 100 0.0 0.0
50 2.6 0.0 0.0 100 0.0 0.0
100 2.6 0.0 0.0 100 0.0 0.0

same road line as
20 16.1 18.1 1.8 21.2 0.0 50.2
50 16.1 20.5 2.5 46.3 21.2 62.6
100 16.1 20.5 2.5 47.0 21.2 62.6

traffic light traffic light

pole

on right lane of /
on right side of

Detected Objects Relationship Graph

traffic light

side walk

side walk

pole
pole

polecar

road

attached to

attached to
attached to

on

on on

Figure 28: Inference results on a CityScapes data set image using the ELE model. The
relationship graph was cleaned by hand for better visuals. Bounding boxes where not
altered to display the amount of objects that where predicted to have relationships
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Differences in attention behavior are visualized in Figure 29 and Figure 27. Compared to
the FED configuration, attention maps in ELE appear more scattered and less concentrated.
For example, query ID 168 in both approaches leads to the same prediction (car on right
side of road), but the attention in ELE includes irrelevant regions such as the sky, while
the FED model focuses more clearly on the street surroundings. Similarly, query ID 86
in ELE reveals inaccurate attention around the sidewalk, leading to misplaced bounding
boxes.

Both models exhibit hallucinations of distant objects, e.g., poles or traffic lights that
are not actually present. These are visible in query IDs 53 (FED) and 134 (ELE), both
incorrectly predicting a traffic light in the same image region.

query id: 168 query id: 86 query id: 134

car on right side of road pole on side walk traffic light attached to pole

Figure 29: Heatmap results on a CityScapes data set image using the ELE model. Query
ID refers to the index of the query in the transformer decoder output. Heatmaps
correspond to the attention maps produced by the DVA module (Equation 2.17), where
the attention map on the top is the subject and the lower one is the object branch.

Table 13 presents the per-class mean recall at K (mR@K) values for the SGDet and
PhrDet metrics across various K values (20, 50, 100) on the real-world data set. The
results compare the performance of the ELE model, in which entity layers were enabled
for training, against the FED model with frozen encoder and detection layers.

The comparison reveals that enabling the entity layers led to improved recall in certain
classes, while performance degraded in others. Notably, the ELE model achieves substan-
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Table 13: Per-class recall values for SGDet and PhrDet across different K values on real
data.

Class K PhrDet SGDet
ELE FED ELE FED

on
20 37.2 41.8 8.9 7.3
50 46.5 44.8 11.6 7.3
100 50.3 51.3 11.8 7.3

attached to
20 5.1 5.2 0.0 2.9
50 13.8 13.7 2.9 2.9
100 13.8 13.7 2.9 2.9

on right side of
20 27.3 42.7 9.2 10.8
50 37.8 49.5 15.9 10.8
100 38.1 50.1 16.1 10.8

parking on
20 38.5 4.1 2.3 0.0
50 38.5 22.8 2.3 0.0
100 38.5 56.5 2.3 0.0

on left side of
20 68.9 71.7 8.2 24.7
50 83.9 74.0 19.7 28.2
100 83.8 74.0 19.7 28.2

on right lane of
20 2.3 0.4 2.0 0.0
50 57.6 26.0 6.3 6.6
100 76.0 26.0 6.3 6.6

on middle lane of
20 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0

on left lane of
20 0.0 0.0 0.0 0.0
50 0.0 2.6 0.0 0.0
100 0.0 2.6 0.0 0.0

tially higher PhrDet recall for the class on right lane of and shows a marked improvement
in SGDet recall for the class on right side of. Similarly, the class on left side of benefits
from enabling entity layers, with consistently higher PhrDet recall values across all K
values.

These mixed results suggest that while enabling training for the entity layers can enhance
performance for specific relationships, but is detection more false positives as shown in
Figure 28. This observation underscores the challenge posed by the domain gap between
synthetic and real-world data. It highlights the need for further investigation into which
components of the model architecture should be adapted or fine-tuned during transfer
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learning. A more selective or adaptive training strategy may be required to achieve
consistent performance gains across all relationship classes.

6.2 Data set Switch Strategy

The Dataset Switch (DS) setting explores a novel training paradigm in which the model is
trained jointly on both real and simulated data. To mitigate the domain gap and prevent
catastrophic forgetting, adaptation was restricted such that only the entity detection
part of the model was updated when processing real data. This was achieved by setting
the relationship detection loss to zero during real-data batches, effectively freezing that
component of the model through zero gradients.

This mechanism required modifying the data loader to provide placeholder relation an-
notations for real samples. During training, the loss function detected whether the input
originated from the real domain and replaced the placeholder labels with the model’s
own predictions. This substitution caused the relation prediction loss to evaluate to zero,
ensuring that no gradients were propagated for the relation decoder.

A challenge arose in the classification loss of subject and object bounding boxes. Since this
component relied on cross-entropy loss (see Section 2.3.5), aligning predicted and target
labels was insufficient to produce zero loss since it would only occur if the model predicted
the correct class with 100% confidence. To circumvent this, the corresponding loss terms
were explicitly hardcoded to zero during real-data batches.

This manual loss manipulation introduced conflicts with PyTorch’s distributed training.
Specifically, parameters that did not receive gradients were flagged as unused, which caused
failures in the backward pass. This was resolved by enabling the
find_unused_parameters=True flag, which allowed the training to proceed at the
cost of increased computational overhead.

A critical implementation detail was ensuring synchronized data set switching across all
GPU ranks. Without consistent domain alignment between GPUs, torch.optim would
hang due to inconsistent parameter updates. To avoid this, training alternated strictly
by one epoch on real data followed by one epoch on simulated data. Attempts to switch
domains at every training step instead of per epoch led to diminished performance on the
simulated test set, suggesting that excessive alternation may hinder stable learning.

In terms of performance (Table 14), the DS training strategy performs comparably to the
baseline on the PhrDet task, indicating effective retention of relational knowledge. However,
it underperform on the SGDet task, highlighting weaknesses in accurately predicting the
spatial configuration of objects when training is decoupled in this manner.
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Table 14: Comparison of mean recall at K for PhrDet and SGDet across different training
strategies on simulated data.

Task K Baseline FED ELE DS

PhrDet
20 63 45 42 45
50 68 48 44 46
100 69 48 44 47

SGDet
20 40 42 28 38
50 41 43 29 38
100 41 43 29 38

Table 15: Per-class recall for SGDet and PhrDet tasks across different model variants and
K values on simulated data.

Class K SGDet PhrDet
Baseline FED DS Baseline FED DS

on
20 15.0 44.0 11.5 51.9 86.9 63.8
50 17.2 45.8 12.7 61.7 88.9 68.4
100 17.7 46.2 12.8 66.4 89.4 70.8

on right side of
20 87.8 90.2 87.9 98.1 97.3 96.4
50 87.9 90.3 87.9 99.7 97.4 96.4
100 87.9 90.3 87.9 99.8 97.4 96.4

on middle lane of
20 98.9 0.0 97.7 100 0.0 100
50 98.9 0.0 97.7 100 0.0 100
100 98.9 0.0 97.7 100 0.0 100

turning right on
20 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0 0.0 0.0

turning left on
20 16.6 90.0 81.5 33.9 94.5 81.5
50 16.6 98.8 81.5 33.9 99.5 81.5
100 16.6 98.8 81.5 33.9 99.5 81.5

is hitting
20 2.6 0.0 0.0 100 0.0 0.0
50 2.6 0.0 0.0 100 0.0 0.0
100 2.6 0.0 0.0 100 0.0 0.0

same road line as
20 16.1 18.1 0.0 21.2 0.0 0.0
50 16.1 20.5 0.0 46.3 21.2 0.0
100 16.1 20.5 0.0 47.0 21.2 0.0

Per-class results (Table 15) reveal further nuances. The DS approach shows a consistent
decline in performance across most classes compared to other strategies and even fails
to predict certain classes such as same road line as. Interestingly, however, it recovers
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Figure 30: Inference results on a CityScapes data set image using the DS model. The
relationship graph was cleaned by hand for better visuals.

perfect recall for on middle lane of, a class where the baseline already performed well.
This suggests that the frozen encoder may have never encoded sufficient information for
predicting that relationship, and once learning was re-enabled, the model was able to
acquire it from scratch.

Turning to qualitative results, inference on real data reveals critical limitations. As shown
in Figure 30, the DS model generates very few predictions—none of which are correct.
Notably, to even elicit these outputs, the confidence threshold had to be lowered from 70%
to 30%. Moreover, the predicted bounding box for the car appears in the same location
across all input images, implying that the entity detection module failed to generalize.

An inspection of intermediate checkpoints revealed a puzzling trend: the model initially
improved over time, but then suddenly degraded in performance, stagnating at the
failure mode shown in Figure 30. This suggests a potential collapse or instability during
optimization.

Attention map visualizations (Figure 31) further confirm this hypothesis. The attention
is diffusely distributed with no clear focus on objects of interest. In fact, the brightest
areas of attention tend to cluster around the sky, indicating that the model is attending
to irrelevant regions and failing to encode meaningful object-centric information.

The adaptation restrictions imposed by the DS approach appear to have caused the model to
operate in two distinct modes, depending on whether the input originates from the simulated
or real domain. This phenomenon is illustrated in Figure 32, which shows attention maps
from the FED model during inference on both real and simulated data. The heatmaps
reveal no significant differences between the two domains: the subject branch exhibits
clearly focused attention, while the object branch attends more broadly—particularly for
classes such as road and sidewalk, where a wider contextual understanding is necessary to
correctly infer relationships.
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query id: 82 query id: 48 query id: 88

car on right side of road traffic light attached to pole traffic light attached to pole

Figure 31: Heatmap results on a CityScapes data set image using the DS model. Query
ID refers to the index of the query in the transformer decoder output. Heatmaps
correspond to the attention maps produced by the DVA module (Equation 2.17), where
the attention map on the top is the subject and the lower one is the object branch.
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query id: 0 query id: 168

car
on right side
of road

query id: 43

poleon
side walk

query id: 168 query id: 15

poleon
side walk

car
on right side
of road

car
on right lane
of road

Figure 32: Attention maps on real and simulated data of the FED model. Query ID refers
to the index of the query in the transformer decoder output. Heatmaps correspond to the
attention maps produced by the DVA module (Equation 2.17), where the attention map
on the top is the subject and the lower one is the object branch.

In contrast, Figure 33 presents attention maps from the DS model under the same
conditions. Here, a distinct difference in attention is observed depending on the domain.
On simulated data, the heatmaps resemble those of the FED model, albeit with reduced
focus in the subject branch and an even broader spread in the object branch. However, for
real data, the attention becomes incoherent, showing no meaningful or consistent pattern.
In many cases, the attention is diffused across irrelevant regions such as the sky, indicating
a breakdown in the model’s ability to generalize.

query id: 82 query id: 141 query id: 150 query id: 82 query id: 172

car
on right side
of road

poleon
side walk

car
on right side
of road

poleon
side walk

traffic light
attached to
pole

Figure 33: Attention maps on real and simulated data of the DS model. Query ID refers
to the index of the query in the transformer decoder output. Heatmaps correspond to the
attention maps produced by the DVA module (Equation 2.17), where the attention map
on the top is the subject and the lower one is the object branch.
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Figure 34 compares the relationship detection outputs of both models. While the DS
model performs relationship inference on simulated data, the predicted bounding boxes
are noticeably less precise than those of the FED model, pointing to a degradation in
spatial grounding. On the other hand, Figure 35 compares the entity detection outputs of
both models. Although the DS model produces less accurate and occasionally misaligned
bounding boxes compared to the FED model, the results show that this component remains
functional to some extent across both domains.

traffic light
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road road

pole

pole
pole

pole
pole

pole

road

car

car

side walk
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side walk

side walk
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traffic light
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on right side of
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on

on
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attached to

driving from left to right /
on opposing side of

attached to
attached to

Figure 34: Relationship detection on simulated data using the DS model (top) and the
FED model (bottom). The relationship graph was cleaned by hand for better visuals.
Bounding boxes where not altered to display the amount of objects that where predicted
to have relationships

These observations support the hypothesis that the adaptation restrictions in the DS
model led to partial domain specialization: the model appears capable of performing entity
detection on both simulated and real data, but is only able to infer relationships in the
simulated domain. This domain-specific behavior mirrors the restricted training conditions
and highlights the challenge of achieving robust generalization under such constraints.

Overall, the DS strategy illustrates the potential of modular domain adaptation but
also its pitfalls. While it retains some relational reasoning capability, it struggles with
consistent object localization and exhibits optimization instability. Addressing these
challenges requires refining the loss masking strategy, stabilizing training across domains,
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Entity Detection of FED Model Entity Detection of DS Model

Figure 35: Entity detection on real data using the FED model (left) and the FED model
(right). Labels where replaced by hand for better visuals.

and improving robustness to per-class performance drops. The following section will
describe one attempt of solving this.

6.2.1 Semi-Supervised Variant

This configuration builds upon the previously introduced setup and incorporates a strategy
to refine the loss computation, as described in Section 6.2. Rather than setting the loss
to zero for samples originating from the real domain, pseudo-labels are employed to
compute a meaningful loss. However, since these pseudo-labels are inherently noisy, the
loss contribution is downscaled by a factor of α = 0.4.

In this thesis, pseudo-labels are used to distill knowledge from one model into another.
Although [KRAD24] notes that this process is not traditionally classified as pseudo-labeling,
the term will be used in this context. The model providing the pseudo-labels is the one
trained using the FED strategy (Section 6.1), as the ELE strategy tends to produce a
higher number of false positives (see Figure 28).

The selection of pseudo-labels is based on confidence-thresholding [KRAD24], with a
threshold set to τ = 0.85. It was hypothesized that the model trained under this semi-
supervised setting would perform comparably to the FED model, given that its training
signal was derived from it. However, the results shown in Figure 36 deviate from this
expectation. While the failure mode of the DS strategy (as detailed in Section 6.2) is
effectively mitigated, the performance still falls significantly short of the FED baseline
(see Figure 26).

Further insights are provided by the attention maps in Figure 37, which reveal even more
distorted attention in the DVA module than observed in Figure 31. These findings suggest
that the most effective strategy for bridging the domain gap remains the two-stage training
approach—first pre-training the entity detection module of RelTR, followed by training the
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Table 16: Per-class recall values for SGDet and PhrDet across different K values on real
data.

Class K PhrDet SGDet
DS FED DS FED

on
20 11.8 41.8 0.0 7.3
50 17.7 44.8 0.0 7.3
100 18.7 51.3 0.0 7.3

attached to
20 0.0 5.2 0.0 2.9
50 0.0 13.7 0.0 2.9
100 0.0 13.7 0.0 2.9

on right side of
20 90.7 42.7 0.0 10.8
50 90.7 49.5 0.0 10.8
100 90.7 50.1 0.0 10.8

parking on
20 0.0 4.1 0.0 0.0
50 0.0 22.8 0.0 0.0
100 0.0 56.5 0.0 0.0

on left side of
20 11.5 71.7 0.0 24.7
50 11.5 74.0 0.0 28.2
100 11.5 74.0 0.0 28.2

on right lane of
20 0.0 0.4 0.0 0.0
50 0.0 26.0 0.0 6.6
100 0.0 26.0 0.0 6.6

on middle lane of
20 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0

on left lane of
20 0.0 0.0 0.0 0.0
50 0.0 2.6 0.0 0.0
100 0.0 2.6 0.0 0.0

relationship detection module. Consequently, further exploration of the semi-supervised
variant was deemed unnecessary.
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Figure 36: Inference results on a CityScapes data set image using the semi-supervised
Variant of the DS model. The relationship graph was cleaned by hand for better visuals.

query id: 101query id: 112 query id: 63

car on right side of road pole on side walk traffic sign attached to pole

Figure 37: Heatmap results on a CityScapes data set image using the semi-supervised
variant of the DS model. Query ID refers to the index of the query in the transformer
decoder output. Heatmaps correspond to the attention maps produced by the DVA
module (Equation 2.17), where the attention map on the top is the subject and the lower
one is the object branch.
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7 Ablation Study

Following the evaluation on real-world data, the following ablation study investigates the
impact of domain gaps within the FED training approach. Two options can be considered
to reduce this domain gap: (1) increasing the realism of the simulator used to generate
relationship annotations, or (2) selecting a goal domain that is visually more similar to
the simulator.

The first option is currently not feasible. While CARLA has been updated to Unreal
Engine 5, which significantly improves visual realism, the annotation tool used in this
thesis—based on ScenarioRunner [CAR23]—does not, to the date of this thesis, support
this newer version of CARLA. As a result, the second approach is pursued. For this, a goal
domain with greater visual similarity to CARLA is selected. The GTA data set [RVRK16a],
which, like CARLA, is based on a game engine, fulfills this criterion. Figure 38 illustrates
the optical similarity between the two data sets.

Image from CARLAImage from GTA

Figure 38: Visual similarity across synthetic domains: Example images from the GTA
(left) and CARLA (right) data sets

As demonstrated in Section 6, the most effective configuration is the FED approach, where
the entity detection module of RelTR is first pre-trained on a mixture of the goal and start
domains with object annotations, followed by training the relationship detection module
on start domain data annotated with relationships. The same approach is adopted for the
current ablation study.

The influence of the domain gap becomes immediately apparent when comparing entity
detection models trained exclusively on different goal domains. Figure 39 presents results
from models trained only on GTA images and only on real images, both evaluated
on CARLA input. For the GTA-trained model, incorrect predictions could be almost
completely eliminated by applying a confidence threshold of τGTA = 0.7. In contrast,
the real-trained model continued to produce a large number of false positives even at a
threshold of τReal = 0.9. This behavior, previously observed in Section 6.1.2, can now be
attributed to the larger domain gap between real-world images and the CARLA simulator.
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Entity Detection trained only on GTA Entity Detection trained only on CityScapes

Figure 39: Entity detection performance on CARLA images. Model trained only on GTA
images (left) and model trained only on real images (right)

Table 17: Comparison of mean Recall at K for PhrDet and SGDet between the baseline
and FED models.

Task K Baseline FED Real FED GTA

PhrDet
20 63 45 58
50 68 48 63
100 69 48 64

SGDet
20 40 42 46
50 41 43 48
100 41 43 49

Table 17 compares mean recall at K (mR@K) for PhrDet and SGDet between baseline
and FED models trained with different goal domains. Two key findings emerge:

1. Training on a visually closer goal domain (GTA) improves object localization, as
evidenced by higher SGDet recall scores.

2. The FED model trained on GTA also outperforms the version trained on real data
in the PhrDet task and approaches the performance of the baseline trained only on
CARLA.

Table 18 provides a per-class analysis on simulated data. The FED model trained on
GTA consistently performs similarly to or better than the baseline across multiple classes,
including on, on right side of, and same road line as. Notably, the class on middle lane
of, previously not predicted by the FED model trained on real data, is now accurately
recognized. This suggests that prior assumptions about missing encoded information can
instead be explained by the larger domain gap.

However, the GTA-trained model does underperform the real-trained model on certain
classes (e.g., turning left on). This may be attributed to overfitting in the real-trained model
due to annotation imbalance. On the other hand, the GTA-trained model successfully
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Table 18: Per-class recall values for SGDet and PhrDet across different K values on
simulated data using the FED model trained on real and GTA data.

Class K SGDet PhrDet
Baseline Real GTA Baseline Real GTA

on
20 15.0 44.0 38.8 51.9 86.9 74.7
50 17.2 45.8 45.2 61.7 88.9 79.9
100 17.7 46.2 49.0 66.4 89.4 83.6

on right side of
20 87.8 90.2 95.9 98.1 97.3 96.1
50 87.9 90.3 96.0 99.7 97.4 96.4
100 87.9 90.3 96.0 99.8 97.4 96.4

on middle lane of
20 98.9 0.0 99.8 100 0.0 100
50 98.9 0.0 99.8 100 0.0 100
100 98.9 0.0 99.8 100 0.0 100

turning right on
20 0.0 0.0 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0 0.0 0.2
100 0.0 0.0 0.2 0.0 0.0 0.4

turning left on
20 16.6 98.8 60.2 33.9 94.5 60.2
50 16.6 98.8 60.2 33.9 94.5 60.2
100 16.6 98.8 60.2 33.9 94.5 60.2

is hitting
20 2.6 0.0 0.0 100 0.0 0.0
50 2.6 0.0 0.0 100 0.0 0.0
100 2.6 0.0 0.0 100 0.0 0.0

same road line as
20 16.1 18.1 52.0 21.2 0.0 67.2
50 16.1 20.5 54.2 46.3 21.2 85.0
100 16.1 20.5 54.2 47.0 21.2 91.3

predicts classes that the baseline could not (turning right on) and fails on others like is
hitting, possibly due to their rarity (see Figure 22).

Figure 40 and Figure 41 provide visualizations of the final relationship inference and
attention maps for the DVA module. Compared to the FED model trained on real data
(Figure 27), attention is more clearly focused on relevant regions, highlighting the improved
bridging capability when training with a visually similar domain.

Finally, Table 19 compares the performance of the models in their respective goal domains
using a small, manually annotated evaluation data set. The model trained on GTA
outperforms the model trained on real data in three of the four most frequent relationship
classes: on, attached to, and on right side of. On opposing side of is also better predicted
by the GTA-trained model. Underperformance in some other classes can be explained
by class imbalance (see Figure 22). Importantly, these results show a clearer correlation
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Figure 40: Final relationship predictions from the FED model trained on GTA data. The
Relationship Graph was cleaned by hand for better visuals. Bounding Boxes where not
altered to display the amount of objects that where predicted to have relationships

query id: 182 query id: 48 query id: 171

car on right side of roadpole on side walktraffic light attached to pole

Figure 41: Attention maps of the DVA module for the FED model trained on GTA data.
Query ID refers to the index of the query in the transformer decoder output. Heatmaps
correspond to the attention maps produced by the DVA Module (Equation 2.17), where
the attention map on the top is the subject and the lower one is the object branch.
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Table 19: Per-class recall values for SGDet and PhrDet across different K values of the
FED models trained on real and GTA data

Class K PhrDet SGDet
FED GTA FED Real FED GTA FED Real

on
20 73.0 41.8 47.6 7.3
50 82.4 44.8 51.1 7.3
100 85.3 51.3 53.9 7.3

attached to
20 81.7 5.2 16.4 2.9
50 82.9 13.7 17.0 2.9
100 82.9 13.7 17.0 2.9

on right side of
20 66.8 42.7 44.4 10.8
50 69.4 49.5 47.9 10.8
100 69.4 50.1 48.1 10.8

on left side of
20 29.1 71.7 17.7 24.7
50 37.1 74.0 23.0 28.2
100 37.1 74.0 23.0 28.2

on right lane of
20 0.0 0.4 0.0 0.0
50 3.1 26.0 0.0 6.6
100 9.9 26.0 0.0 6.6

on middle lane of
20 0.0 0.0 0.0 0.0
50 0.0 0.0 0.0 0.0
100 0.0 0.0 0.0 0.0

on left lane of
20 0.0 0.0 0.0 0.0
50 0.0 2.6 0.0 0.0
100 0.0 2.6 0.0 0.0

on opposing side of
20 85.4 0.0 13.5 0.0
50 85.4 25.4 19.8 0.0
100 85.4 52.9 19.8 0.0

between annotation density and performance for GTA, supporting the hypothesis that
domain similarity enables better generalization from increased data volume.
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This section reflects on the findings of the conducted experiments, analyzing the observed
results in the context of the research objectives. Strengths, limitations, and potential
implications of the proposed approach are discussed, with particular emphasis on the factors
influencing model performance in both simulated and real-world domains. Furthermore,
avenues for future work are outlined, highlighting possible methodological improvements,
additional experiments, and broader applications that could extend the contributions of
this thesis.

8.1 Baseline

The baseline evaluation of RelTR on the simulated data set shows that the model can
learn the relationships between stationary and dynamic objects effectively. This validates
the quality of the data set’s annotations. High recall in relationships such as on right side
of and on middle lane of under both PhrDet and SGDet conditions suggests that the
transformer-based architecture is well-suited to capturing structured relationships in the
image. However, the consistently lower SGDet scores and limited performance gains with
increasing K indicate that precise object localization remains a bottleneck, constraining
the model’s ability to meet stricter relational grounding criteria. This weakness is most
pronounced in relationships that are even hard for humans to classify based of only
an image-such as turning right on-which likely suffer from a combination of data set
imbalance and inherent visual ambiguity. Interestingly, high recall in visually distinctive
but infrequent relationships (e.g. is hitting) demonstrates that class frequency alone is not
a limiting factor if the models train and goal domains are identical. Cross-attention map
analysis further reveals a close alignment between model focus and semantically meaningful
image regions for correct predictions, while wrong predictions often arise from overfitting
to simulation-specific artifacts or insufficient viewpoint diversity, see the relationship
prediction of person riding bicycle in Figure 25. Together, these findings confirm that
the simulated data set provides a viable training ground for relationship predictions and
establish a benchmark for evaluating the domain transfer strategies. At the same time,
however, they underscore the necessity of a more diverse data set.

8.2 Frozen Entity Detection

The FED approach demonstrates the potential to leverage pre-trained entity representations
learned from real-world scenes. By freezing the entity detection module initialized with real-
data weights, the model benefits from robust and semantically meaningful object features,
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which provide a stable foundation for relationship prediction in the simulated training
domain. Although the domain gap restricts adaptation during relationship learning, visible
by the lost capability of predicting the class on middle lane of, the approach validates the
feasibility of transferring learned relational knowledge from simulation to reality. Inference
results on real-world images show that the model can detect relevant relationships with
semantically coherent predictions, especially for common relations such as on and on right
side of. These findings indicate that key road-level spatial relationships can be represented
in a domain-invariant manner, facilitating Sim2Real transfer despite visual domain gaps.
Although localization accuracy on real-world test data remains a challenge, the PhrDet
task scores suggest that the presence of relationships can be detected reliably when the
overlap thresholds of the bounding box are not required to be fully met. The marked
drop in detection for fine-grained lane-specific relationships highlights areas where domain
discrepancies and insufficient simulated-world annotations limit transferability.

The ELE configuration of the FED approach enables the model to adjust fine-grained
visual feature extraction relevant to entity localization and relationship detection beyond
what the frozen encoder provides. A key effect of this increased flexibility is that the model
generates more relationship predictions during inference that are above a high confidence
threshold. Although this leads to improved detection rates for certain spatial relationships-
such as on right lane of and on left side of -the model simultaneously produces a number
of false positives. This behavior is clearly visible in the results of the real-world inference,
where the ELE model identifies more correct relationships but also incorrectly predicts
entities such as distant poles that are not present.

Although the quantitative results reported in this thesis appear modest, they are competi-
tive compared to the original RelTR paper’s performance metrics [CYR23]. However, the
exhibits limitations regarding the scope of scene contexts it can effectively handle. Specifi-
cally, the model requires that the scene content during inference be reasonably represented
within the training data. Scenes with complex or highly varied interactions-where many
entities and relationships occur simultaneously-pose challenges for the model, resulting
in decreased prediction accuracy. This indicated that the model has not yet learned to
generalize robustly across diverse scene content, but rather specializes in the types of
environment encountered during training. This limitation is understandable. Although
the model demonstrates a promising ability to generalize across domains (from simulated
to real-world data), achieving true generalization across varying scene configurations will
require expanding the training data to encompass a broader range of interactions and
scene complexities.

However, the overall results of the FED approach provide encouraging evidence that a
simulation-trained RelTR model, when combined with a real-data pre-trained and frozen
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entity detection module, can perform inference on real-world scenes with meaningful
relational understanding. This outcome confirms the viability of the Sim2Real pipeline
central to this thesis.

8.3 Data set Switch Strategy

The DS approach aimed to jointly train the model on simulated and real data by updating
only the entity detection layers during real-data batches and updating the whole model
during simulated-data batches. However, this strategy led to significant optimization
instability and domain-specific failure modes. Qualitative results reveal that the DS model
produces very few and mostly incorrect predictions on real data. Attention maps show
highly diffuse and unfocused activations, with the model attending to irrelevant regions
such as the sky, indicating a failure to learn meaningful object-centric representations for
the real domain. This discrepancy in domain-specific attention patterns contradicts the
more consistent patterns observed in the FED model.

Overall, the imposed training restrictions caused partial domain specialization where
the model could detect entities across domains but only infer relationships reliably in
simulation. This highlights the difficulty of stabilizing joint domain training with selective
adaptation, leading to degraded localization and relationship prediction on real data. The
DS strategy thus demonstrates the challenges of modular adaptation and suggests that
more stable and nuanced training methods, such as FED, are necessary to achieve robust
Sim2Real transfer.

8.4 Ablation Study

The ablation study reveals the significant impact that the domain gap has on model
performance, an influence greater than initially anticipated. Compared to models pre-
trained on real-world data, models pre-trained on domains visually closer to CARLA, such
as GTA, demonstrate better prediction of relationships learned from CARLA data when
evaluated on CARLA or GTA inputs. Metric scores correlate directly with the amount
of annotated data available per class, giving confidence to conclude that with increasing
annotated data-especially within visually similar domains-can improve the accuracy of
the FED approach. These insights suggest that many performance limitations previously
attributed to model capacity or semantic understanding are actually driven by the domain
gap’s size, characteristics, and annotation scarcity.
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8.5 Future Work

The findings of this study highlight several promising directions for future research aimed
at improving Sim2Real transfer in SGG. One key area is the expansion and diversification
of the simulated data set, particularly focusing on increasing the representation of rela-
tionship classes with low annotation counts. A richer and more balanced data set will help
reduce overfitting and better capture the complexity of real-world scenes. Encouragingly,
this expansion is readily achievable thanks to the semi-automatic annotation toolchain
developed as part of this work, which significantly lowers the barrier for efficient data set
growth.

Alongside data expansion, advanced domain adaptation techniques, such as feature-level
alignment, adversarial training, and style transfer methods, offer the potential to bridge
the visual and semantic gap between simulated and real domains more effectively.

Lastly, the use of next-generation simulation platforms, such as the latest version of CARLA
utilizing Unreal Engine 5’s enhanced photorealism and complex scene dynamics, promises
to provide higher-fidelity synthetic data. This increased realism could substantially narrow
the domain gap, improving the transferability of learned models to real-world scenarios,
and advancing the overall robustness of relationship detection across domains.
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9 Conclusion

The results of this work demonstrate that the selected annotated relations between objects
are generally learnable and predictable by the RelTR model. Among the investigated
strategies for reducing the domain gap between real and simulated images, the FED
approach proved to be the most effective overall. However, potential weaknesses were also
revealed: certain relations, such as on middle lane of, could not be reliably predicted,
suggesting that the frozen encoder may not encode features necessary for these relations.

To examine whether such information might be present in the entity detection layers,
the ELE approach was implemented, allowing these layers to be trainable. While this
resulted in a higher number of predictions, they included both correct and incorrect ones.
Furthermore, an issue of model confidence emerged, likely caused by the domain gap.
Reliable prediction of the previously problematic relations was still not achieved.

The third approach, the DS, which enabled full training of the model and sequential
learning on either real or simulated data, did not improve performance. This confirmed
the FED approach as the most effective among those tested.

The final ablation study provided critical insights: when the domain gap was smaller, the
relations previously deemed unlearnable – including on middle lane of – could be reliably
predicted. This disproves the assumption that the Frozen Entity Detection approach is
inherently unsuitable for these relations and indicates that the primary cause lies in the
magnitude of the domain gap. Results on simulated test data are either close to the baseline
or exceed it in some cases. Performance correlates almost perfectly with the number of
annotated samples per class, suggesting that increasing annotations could further enhance
the accuracy of the approach.

A further major contribution of this work lies in efficient data set creation. In contrast
to existing data sets with relationship annotations, neither crowdsourcing nor a lengthy
manual annotation campaign was required. By leveraging the CARLA simulator, a suitable
data set was created within two months by a single person. The developed semi-automatic
annotation tool significantly reduced manual effort, making the data set far more scalable
than comparable existing resources.
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